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“Globally Maximizing, Locally Minimizing:
Unsupervised Discriminant Projection with
Application to Face and Palm Biometrics”
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Abstract—In [1], UDP is proposed to address the limitation of LPP for the
clustering and classification tasks. In this communication, we show that the basic
ideas of UDP and LPP are identical. In particular, UDP is just a simplified version
of LPP on the assumption that the local density is uniform.

Index Terms—Dimensionality reduction, unsupervised discriminant projection
(UDP), locality preserving projection (LPP).

4

1 EQUIVALENCE oF UDP AND LPP

Upr [1] and LPP [2], [3], [4] are two typical linear extensions of the
graph-motivated manifold learning methods. Let the matrix X =
[x1,X1,--+,X,] denote a set of n data points. The geometric
structure of the data can be modeled by a weighted undirected
graph G = {X,W} with a vertex set X and an affinity matrix
W e IR™". The properties of the graph are characterized by the
Laplacian matrix L =D — W, where D is a diagonal matrix
Dy; =3 ;Wij. LPP is derived by the direct linear approximation
of the Laplacian eigenmap [2], with its optimization as
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In contrast, UDP is formulated by the geometric intuition of
“globally maximizing, locally minimizing” [1], which defines an
optimization problem as
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where S; and Sr are the local and global scatter matrix,

respectively [1].

From the criteria in (1) and (2), we realize that UDP and LPP
essentially share the same basic idea, which is to emphasize the
natural clusters in the projected data by simultaneously minimiz-
ing the local quantity and maximizing the global quantity. This
comment is based on two simple observations. First, their local
quantities, the numerators in (1) and (2), are two equivalent local
scatters because we have
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as shown in equation (13) of [1]. Note that this local scatter is a
natural measure on the closeness of the local structure, which has
been discussed in detail in [1] and [4]. Second, their global
quantities, the denominators in (1) and (2), are two similar scatters
that measure the separability of the whole data set. Specifically,
UDP directly utilizes the global scatter of the classical discriminant
analysis as its global quantity, which is equal to the mean square
distance from any points to the global centroid, i.e.,

wlSrw = %Z [w” (x; —m)]’, (4)
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where m =137 x;. Similarly, LPP characterizes its global quantity
as the weighted sum of square distances from any points to the
origin, i.e.,

w!XDX"w =" Di(w'x;)". (5)

According to [5], the weighted mean of sample set, denoted as
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should be removed before LPP is applied. Thus, the global
quantity of LPP can be interpreted as a weighted global scatter, i.e.,

W XDX w =" Dy [w' (x; — )], (7)

where X is the centered version of X, i.e.,

X=[x;—m,---,x, —m|.

It would be important to note that the only difference between
LPP and UDP comes from the degrees (D;;) of the vertices, which
physically represent the local density around the data points. If the
local density around each point is equal, ie., Vi, D; = p, p is a
constant, we have m = m and

1 L
wlSrw = —wl XDXTw. (8)
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Based on (3) and (8), it can be concluded that the projections
derived from UDP and LPP are identical under the assumption
that the local density is uniform.

Certainly, as this assumption is rarely held in the real-world
applications, there is always a slight difference' between their
performance due to the nonuniformity of D;;. However, one can
clearly see from this section that LPP and UDP are equivalent in
term of basic ideas and geometric intuitions.

2 STATEMENT OF THE PROBLEM

In [1], the authors overlook the globally maximizing character of
LPP so that they wrongly understand that LPP would preserve
the local structure by simply minimizing the local scatter, without
any concern on the global scatter. They claim that “the
consideration of the nonlocal (global) quantity makes UDP more
intuitive and more powerful than LPP for classification or
clustering tasks.” However, as shown in Section 1, LPP considers

1. In practice, the commonly used k-nearest neighbor graph tends to be
regular and most vertices have approximately the same degree. Thus, UDP
and LPP are very similar to each other, and work almost equally.
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Fig. 1. Two clusters of samples in two-dimensional space and the projection
directions of UDP and LPP.

the global scatter in a manner which is more generalized than
UDP. In particular, UDP is just a simplified version of LPP on the
assumption of uniform local density.

One should be aware that Fig. 1 of [1] and the accompanying
explanation on p. 651 have given a misleading comparison
between UDP and LPP. The authors illustrate that UDP success-
fully discriminates the two clusters, whereas LPP collapses all
samples from two clusters together. However, by randomly
generating two Gaussian (not uniformly distributed) clusters and
running the two algorithms to simulate their descriptions, we find
that LPP always derives the discriminative direction similar to that
from UDP, as shown in Fig. 1. One can see from the figure that
there is no meaningful difference between UDP and LPP.

The authors of [1] also ignore the physical meaning of D;; (local
density) and argue that “maximizing w” Spw (Sp = XDXT) does
not make sense with respect to discrimination” on pp. 656. Note
that D;; is a natural measure on the “importance” of the data points
[3] since the points with large D;; tend to be the representative
(central) points of the clusters and the ones with small D;; are
likely the noise and outliers. Hence, maximizing the D;;-weighted
global scatter of LPP, ie, wlSpw, explicitly emphasizes the
natural clusters with strong noise robustness and thus makes clear
sense to discrimination. Furthermore, from the perspective of
manifold learning, D provides a discrete approximation to the
standard measure on a Riemannian manifold and plays an
indispensable role when LPP finds the optimal linear approxima-
tions to the eigenfunctions of the Laplace Beltrami operator on the
manifold,? Conversely, the global scatter of UDP, i.e., w!Srw,
ignores the effects of D;;, weighting each point equally. Strictly
speaking, this quantity makes UDP relatively sensitive to outliers
and noise and imperfect with respect to the theory of manifold
learning, though it is also intuitive for discrimination.

One may wonder why UDP can outperform LPP in the
experiments of [1] in despite of its theoretical deficiency. Note
that the experiments in [1] mainly focus on the special cases with
small (or nonrepresentative) training data set, where the algo-
rithms have to learn from undersampled distributions. In these
experiments, the local density D;; of LPP becomes unreliable,
whereas UDP performs an useful regularization by the “uniform
density” assumption and thus generalizes better when compared
against LPP. Additional empirical comparisons of UDP and LPP
are necessary for more comprehensive understanding, but this is
beyond the scope of this comment paper.

2. The authors would like to acknowledge the anonymous reviewer for
suggesting this point.
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Finally, we would like to conclude that UDP is an effective
algorithm as a simplified, or regularized, version of LPP, but there
is no reason to prefer UDP over LPP for the general classification
and clustering tasks.
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