

Uncertainty and Bias in Face Recognition and Expression Analysis

Weihong Deng Beijing Univ. Post. & Telecom.

Computer vision: revolutionary technology

Internet Data Growth

Global Data Traffic (PB/month)

manage the massive photos and videos

•••

Visual recognition

naming objects

identifying people

understanding human emotions and behaviors

Visual recognition

Object

Face

MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, Jianfeng Gao

Microsoft Research {yandong.guo,leizhang,yuxiao.hu,xiaohe,jfgao}@microsoft.com

History of CNN

Kunihiko Fukushima

Yann LeCun

Geoff Hinton

AlexNet

Neocognitron

K Fukushima, Biological cybernetics, 1980

LeNet

Y LeCun, et al, Proceedings of the IEEE, 1998 A Krizhevsky, I Sutskever, GE Hinton, NIPS 2012

Blossom of CNN

6

Deep Face Recognition: A Survey

Mei Wang & Weihong Deng, Deep Face Recognition: A Survey, arXiv:1804.06655

Deep Face Recognition: A Survey

Mei Wang & Weihong Deng, Deep Face Recognition: A Survey, arXiv:1804.06655

Same or Different People?

Angelababy

Angelababy

DCNN correct, Students wrong

The first 4 image pairs are from Similar-Looking LFW database

Weihong Deng, et al., Pattern Recognition, 2017

Why visual recognition is so hard?

Focus on face uncertainty: Deliberately selected pairs

Negative pairs

Cross-Aging

Cross-Poses

Similar-looking

From LFW to **SL/CA/CPLFW**

Identical celebrities, scale, and protocols

Similar-looking

Similar-Looking

3K negative pairs

Similar-look face pairs selected by crowd-sourcing

Weihong Deng et al. Pattern Recognition 2017

Aging

Cross-Age 3K positive pairs Cross-age face pairs selected by crowd-sourcing

Tianyue Zheng, Weihong Deng, arXiv:1708.08197

Cross-Pose

3K positive pairs Cross-pose face pairs selected by crowd-sourcing

Tianyue Zheng, Weihong Deng, BUPT-TR 2018

Human-Machine Comparison

Face Transfer to reduce variability

Face Normalization Results

Face normalization of the same person

Yichen Qian, Weihong Deng, et al., CVPR 2019.¹⁵

Face Normalization Results

Face normalization results on IJB-A.

Face Sketch→Photo Results

Sketch→ Photo Synthesis on CUFS.

Virtual Softmax and Normalized metric learning

Binghui Chen and Weihong Deng, NIPS 2018

Signal-to-Noise Ratio Metric Learning:

Given two images x_i and x_j , the learned features can be denoted as $h_i = f(:, x_i)$ and $h_j = f(:, x_j)$, we define the SNR between the anchor feature h_i and the compared feature h_j as:

$$SNR_{ij} = \frac{var(h_i)}{var(h_j - h_i)}.$$
SNR distance is $d_S(h_i, h_j) = \frac{1}{SNR_{ij}} = \frac{var(h_j - h_i)}{var(h_i)}$

TongTong Yuan, Weihong Deng et al., CVPR 2019

Man-made Adversarial Uncertainty

Microsoft Azure

Different people. Confidence is 0.08944

The same person. Confidence is 0.91928

Uncertainty in Visual recognition

Adversarial Training Framework

vulnerability

exploitation

of potential

Yaoyao Zhong, Weihong Deng, et al., ICCV 2019. 22

Adversarial Learning MTER- Experiment

The experimental results on MNIST, CASIA-WebFace, VGGFace2 and MS-Celeb-1M reveal that our method increases the robustness of the network against adversarial attacks in simple object classification and deep face recognition.

trained with Softmax and Softmax+MTER.

Figure 1. Embedding space visualization of MNIST Figure 2. Accuracy on clean images, and adversarial examples on MNIST.

Uncertainty Challenges from Data Deficiency

Normalization and Generation via 3D Prior Knowledge

Unequal Training for Long-tailed learning

Racial Bias

Mei Wang, Weihong Deng, et al., ICCV 2019. 27

Existence of racial bias

	Madal	RFW				
	Model	Caucasian	Indian	Asian	African	
SOTA Algorithms	Center-loss	87.18	81.92	79.32	78.00	
	SphereFace	90.80	87.02	82.95	82.28	
	ArcFace	92.15	88.00	83.98	84.93	
	VGGFace2	89.90	86.13	84.93	83.38	
	Mean	90.01	85.77	82.80	82.15	
Commercial APIs	Face++	93.90	88.55	92.47	87.50	
	Baidu	89.13	86.53	90.27	77.97	
	Amazon	90.45	87.20	84.87	86.27	
	Microsoft	87.60	82.83	79.67	75.83	
	Mean	90.27	86.28	86.82	81.89	

Asian

Black

Deep information maximization adaptation network (IMAN)

Methods	Caucasian	Indian	Asian	African	
Softmax	94.12	88.33	84.60	83.47	
DDC-S	-	90.53	86.32	84.95	
DAN-S	-	89.98	85.53	84.10	
IMAN-S (ours)	-	91.08	89.88	89.13	
Recognition accuracy on color races is boosted Mei Wang We					

A major driver of bias in face recognition

	Racial distribution (%)				
Database	Caucasian	Asian	Indian	African	CURRENT TRAINING DBS
CASIA- WebFace	84.5	2.6	1.6	11.3	🗖 Caucasian 📲 Asian 📲 Indian 🔳 African
VGGFace2	74.2	6.0	4.0	15.8	
MS-Celeb-1M	76.3	6.6	2.6	14.5	African 14%
Average	78.3	5.0	2.7	13.8	Indian 3% Asian 5%

Caucasian 78%

31

Fair loss for Unbiased Training

Overview

Understanding Human Emotions

Charles Darwin theorized that emotional expression was evoluted by natural selection

• Different emotions evolved at different times:

Ancient parts of the brain

Primal Emotions e.g., fear

Early mammals

Filial Emotions e.g., smile

Social Primates

Social Emotions e.g., guilt

Deeper Look at Expression Dataset Bias

Emotion-Conditional Adaption Network (ECAN)

Crowdsourcing: Select a single basic expression

Dataset Construction (RAF-ML)

Dataset Construction (RAF-DB)

7 classes Basic Emotions

12 classes Compound Emotions

Dataset Construction (RAF-ML)

lov

Shan Li, Weihong Deng, IJCV 2019.

Deep Bi-manifold CNN (DBM-CNN)

Deep Bi-manifold CNN (DBM-CNN)

Smoothness in terms of both face appearance and emotion perception

Deep Facial Expression Recognition:

Shan Li & W. Deng, Deep Facial Expression Recognition: A Survey, (arXiv:1804.08348)

Summary: Technical contributions

Major Contributions: Deep representation learning

Towards Visual Intelligence

Acknowledgements

For data, code on :

Thank you !

http://www.whdeng.cn

Major Sponsors

国家自然科学 基金委员会 National Natural Science Foundation of China COLUMN STREET

