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Abstract

Past research on facial expressions have used relative-
ly limited datasets, which makes it unclear whether cur-
rent methods can be employed in real world. In this pa-
per, we present a novel database, RAF-DB, which contains
about 30000 facial images from thousands of individuals.
Each image has been individually labeled about 40 times,
then EM algorithm was used to filter out unreliable label-
s. Crowdsourcing reveals that real-world faces often ex-
press compound emotions, or even mixture ones. For all
we know, RAF-DB is the first database that contains com-
pound expressions in the wild. Our cross-database study
shows that the action units of basic emotions in RAF-DB are
much more diverse than, or even deviate from, those of lab-
controlled ones. To address this problem, we propose a new
DLP-CNN (Deep Locality-Preserving CNN) method, which
aims to enhance the discriminative power of deep features
by preserving the locality closeness while maximizing the
inter-class scatters. The benchmark experiments on the 7-
class basic expressions and 11-class compound expression-
s, as well as the additional experiments on SFEW and CK+
databases, show that the proposed DLP-CNN outperforms
the state-of-the-art handcrafted features and deep learning
based methods for the expression recognition in the wild.

1. Introduction

Millions of images are being uploaded every day by user-
s from different events and social gatherings. There is an
increasing interest in designing systems capable of under-
standing human manifestations of emotional attributes and
affective displays. To automatic learn the affective state of
face images from the Internet, large annotated databases are
required. However, the complexity of annotations of emo-
tion categories has hindered the collection of large annotat-
ed databases. On the other side, popular AU coding [12]
requires specific expertise to take months to learn and be
perfected, hence, alternative solutions are needed. And due

to the cultural difference in the way of perceiving facial e-
motion [13], it is difficult for psychologists to define definite
prototypical AUs for each facial expressions. Therefore, it
is also worth to study the emotion of social images from the
judgments of a large common population, besides from the
professional knowledge of a few experts.

In this paper, we propose to study the common ex-
pression perception by a reliable crowdsourcing approach.
Specifically, our well-trained annotators are asked to label
face images with one of the seven basic categories [11],
and each face is annotated enough times independently, i.e.
about 40 times in our experiment. Then, the noisy labels
are filtered by an EM based reliability evaluation algorithm,
through which each image can be represented reliably by a
7-dimensional emotion probability vector. By analyzing 1.2
million labels of 29672 great-diverse facial images down-
loaded from the Internet, these Real-world Affective Faces
(RAF)1 are naturally categorized into two types: basic ex-
pression with single-modal distribution and compound e-
motions with bimodal distribution, an observation support-
ing a recent ground-breaking finding in the lab-controlled
condition [10]. To the best of our knowledge, the real-
world expression database RAF-DB is the first large-scale
database providing the labels of common expression per-
ception and compound emotions in unconstrained environ-
ment.

The cross-database experiment and AU analysis on
RAF-DB indicates that AUs of real-world expressions are
much more diverse than, or even deviate from, those of
lab-controlled ones guided by psychologists. To address
this ambiguity of unconstrained emotion, we further pro-
pose a novel Deep Locality-preserving CNN (DLP-CNN).
Inspired by [17], we develop a practical back-propagation
algorithm which creates a locality preserving loss (LP loss)
aiming to pull the locally neighboring faces of the same
class together. Jointly trained with the classical softmax
loss which forces different classes to stay apart, locality p-
reserving loss drives the intra-class local clusters of each

1http://whdeng.cn/RAF/model1.html
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Figure 1. The distribution of deeply learned features in (a) “DCNN without LP loss” and (b) “DLP-CNN”. As can be seen, locality preserv-
ing loss layer helps the network to learn features with more discrimination. Moreover, it can be clearly seen that non-neutral expressions
which have obvious intensity variations, such as Happiness, Sadness, Fear, Surprise and Anger, change the intensity continuously and
smoothly, from low to high, from center to periphery. And images with Disgust label, which is the most confused expression, are assem-
bled in the middle. With the neighborhood preserving character of DLP-CNN, the deep feature seems to be able to capture the intrinsic
expression manifold structure to a large extent. Best viewed in color.

class to become compact, and thus the discriminative pow-
er of the deeply learned features can be highly enhanced.
Moreover, locally neighboring faces tend to share similar e-
motion intensity by using DLP-CNN, which can derive the
discriminative deep feature with smooth emotion intensity
transition. Figure 1 (b) shows the resulting 2-dimensional
deep features learnt from our DLP-CNN model, where we
attach example face images with various intensity in differ-
ent expression classes.

Extensive experiments on RAF-DB and other related
databases show that the proposed DLP-CNN outperform-
s other state-of-the-art methods. Moreover, the activation
features trained on RAF-DB can be re-purposed to new
databases with small-sample training data, suggesting that
the DLP-CNN is a powerful tool to handle the cross-culture
problem on perception of emotion (POE).

2. Related Work

2.1. Expression image datasets

Facial expression recognition largely relies on well-
defined databases, however, several limitations exist.

Many available databases were produced in tightly con-
trolled environments without diversity on subjects and con-
ditions. Subjects in them were taught to act expressions in
a uniform way. Besides, the majority of current databas-
es only include six basic categories or less. However, im-
ages captured in real-life scenarios often present complex,
compound or even ambiguous emotions rather than simple
and prototypical ones [3]. What’s more, labelers in these
databases are too few, which would reduce the reliability
and validity of the emotion labels.

We then focus on discussing image databases with spon-
taneous expressions. SFEW 2.0 [7] contains 700 images
extracted from movies, and images were labelled by two

independent labelers. The database covers unconstrained
facial expressions, varied head poses, large age range, oc-
clusions, varied focus, different resolution of face. FER-
2013 [16] contains 35887 images collected and labelled us-
ing the Google image search API. Cropped images are pro-
vided in 48×48 pixels and converted to grayscale. BP4D-
Spontaneous [47] contains plenty of images from 41 sub-
jects revealing a range of spontaneous expressions elicit-
ed through eight tasks. However, the database organiza-
tion were lab-controlled. AM-FED [30] is collected in real
world with sufficient samples, however, without specifical
emotion labels, it’s more suited for researches on AUs. E-
motioNet [1] is a large database of one million facial expres-
sion images in the wild created by an automatic AU detec-
tion algorithm. Unlike these databases, RAF-DB simulta-
neously satisfies multiple requirements: sufficient data, var-
ious environments, group perceiving on facial expressions
and data labels with the least noise.

2.2. The framework for expression recognition

Facial expression analysis can be generally divided into
three main parts [14]: face aquisition, facial feature extrac-
tion and facial expression classification.

In face aquisition stage, an automatic face detector is
used to locate faces in complex scenes. Feature points are
then used to crop and align faces into a unified template
by geometric transformations. For facial feature extrac-
tion, previous methods can be generally categorized into t-
wo groups: Appearance-based methods [29] and AU-based
methods [42]. The former uses common feature extraction
methods such as LBP [38], Haar [44]. The latter recog-
nizes expression by detecting AUs. Feature classification is
performed in the last stage. The commonly used methods
include SVM, nearest neighbor, LDA, DBN and decision-
level fusion on these classifiers [46]. The extracted facial



expression information is either classified as a set of facial
actions or a particular basic emotion [34]. Most focus on
the latter and is based on Ekman’s theory of six basic emo-
tions [12]. Indeed, without making additional assumptions
about how to determine what action units constitute an ex-
pression, there can be no exact definition for the expression
category. The basic emotional expressions is therefore not
universal enough to generalize expressions displayed on hu-
man face [37].

2.3. Deep learning for expression recognition

Recently, deep learning algorithms have been applied
to visual object recognition, face verification and detec-
tion, image classification and many other problems, which
achieve state-of-the-art results. So far, there have been a
few deep neural networks used in facial expression recogni-
tion due to the lack of sufficient training samples. In ICM-
L 2013 competition [16], the winner [41] was based on
Deep Convolutional Neural Network (DCNN) plus SVM.
In EmotiW 2013 competition [6], the winner [19] combined
modality specific deep neural network models. In EmotiW
2015 [8], more competitors have tried deep learning meth-
ods: transfer learning was used to solve the problem of
small database in [32], hierarchical committee of multi-
column DCNNs in [20] gained the best result on SFEW
database, LBP features combined with DCNNs structure
were proposed in [22]. In [24], AU-aware Deep Networks
(AUDN) was proposed to learn features with the interpreta-
tion of facial AUs. In [31], a DCNN with inception layers
was proposed to gain comparable results.

3. Real-world Expression Database: RAF-DB
3.1. Creating RAF-DB

Data collection. At the very beginning, the images’
URLs collected from Flickr were fed into an automat-
ic open-source downloader to download images in batch-
es. Considering that the results returned by Flickr’s im-
age search API were in well-structured XML format, from
which the URLs can be easily parsed, we then used a set
of keywords (for example: smile, giggle, cry, rage, scared,
frightened, terrified, shocked, astonished, disgust, expres-
sionless) to pick out images that were related with the six
basic emotions plus the neutral emotion. At last, a to-
tal of 29672 real-world facial images are presented in our
database. Figure 2 shows the pipeline of data collection.

Database annotation. Annotating nearly 30000 images
of expression is an extremely difficult and time-consuming
task. Considering the compounded property of real-world
expressions, multiple views of images’ expression state
should be collected from different labelers. We therefore
employed 315 annotators (students and staffs from univer-
sities) who have been instructed with one-hour tutorial of

Figure 2. Overview of construction and annotation of RAF-DB.

psychological knowledge on emotion for an online facial
expression annotation assignment, where they were asked
to classify the image into the most apparent one from seven
classes. We developed a website for RAF-DB annotation,
which shows each image with exclusive attribute options.
Images were randomly and equally assigned to each label-
er, ensuring that there were no direct correlation among the
images labeled by one person. And each image was assured
to be labeled by about 40 independent labelers. After that,
a multi-label annotation result is obtained for each image,
i.e., a seven dimensional vector that each dimension indi-
cates the votes of relevant emotion.

Metadata. The data is provided with precise locations
and size of the face region, as well as the manually located
five landmark points (the central of two eyes, the tips of the
nose and two corners of the mouth) on the face. Besides, an
automatic landmark annotation mode without manual label
is included: 37 landmarks were picked out from the annota-
tion results provided by Face++ API [18]. We also manual-
ly annotated the basic attributes (gender, age (5 ranges) and
race) of all RAF faces. In summary, subjects in our database
range in age from 0 to 70 years old. They are 52% female,
43% male, and 5% remains unsure. For racial distribution,
there are 77% Caucasian, 8% African-American, and 15%
Asian. The pose of each image, including pitch, yaw and
roll parameters, is computed from the manually labeled lo-
cations of the five facial landmarks.

Reliability estimation. Due to subjectivity and varied
expertise of labelers and wide ranging levels of images’ d-
ifficulty, there were some disagreements among annotators.
To get rid of noisy labels, motivated by [45], a Expectation
Maximization (EM) framework was used to assess each la-
beler’s reliability.

Let D = {(xj , yj , t1j , t2j , ..., tRj )}nj=1denote a set of n la-
beled inputs, where yj is the gold standard label (hidden
variable) for the jth samples xj , tij ∈ {1, 2, 3, 4, 5, 6, 7} is
the corresponding label given by the ith annotator. The cor-
rect probability of tij are formulated as a sigmoid function:
p(tij = yj |αi, βj) = (1 + exp(−αiβj))

−1, where 1/βj is
the difficulty of the jth images, αi is the reliability of ith
annotators.

Our goal is to optimize the log-likelihood of the given
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Figure 3. Examples of six-class basic emotions and twelve-class compound emotions from RAF-DB. Detailed data distribution of RAF-DB
has been attached to each expression classes.

labels:

max
β>0

l(α, β) =
∑
j

ln p(t|α, β) =
∑
j

ln
∑
y

p(t, y|α, β)

=
∑
j

ln
∑
y

Qj(y)
p(t, y|α, β)
Qj(y)

≥
∑
j

∑
y

Qj(y) ln
p(t, y|α, β)
Qj(y)

where Qj(y) is a certain distribution of hidden variable y,

Qj(yj) =
p(tj , yj |α, β)∑
y
p(tj , yj |α, β)

=
p(tj , yj |α, β)
p(tj |α, β)

= p(yj |tj , α, β)

After revision, 285 annotators’ labels have been remained
and Cronbach’s Alpha score of all labels is 0.966.

Subset Partitions. Let Gj = {g1, g2, ..., g7} denotes
the 7-dimensional ground truth of the jth image, where

gk =
R∑
i=1

αi1tij=k (αi means the ith annotators reliabili-

ty. 1A is an indicator function that evaluates to “1” if the
Boolean expression A is true and “0” otherwise.), and label
k ∈ {1, 2, 3, 4, 5, 6, 7} refer to surprise, fear, disgust, hap-
piness, sadness, anger and neutral, respectively. We then
divided RAF-DB into different subsets according to the 7-
dimensional ground truth. For Single-label Subset, we first

calculated the mean distribution value gmean =
7∑

k=1

gk/7

for each image, then picked out label k w.r.t. gk > gmean

as the valid label. Images who have single valid label are
classified into Single-label Subset. For Two-tab Subset, the
partition rule is similar. The only difference is that we took
out images with neutral label before partition. Figure 3 ex-
hibits specific samples of 6-class basic emotions and 12-
class compound emotions.

3.2. CK+ and RAF Cross-Database Study

We then conducted a CK+ [26] and RAF cross-database
study to explore the specific difference between expression-

Algorithm 1 Label reliability estimation algorithm.
Input: Training set D = {(xj , t1j , t2j , ..., tRj )}nj=1

Output: Each annotator’s reliability α∗
i

Initialize:
∀j = 1, ..., n, initialize the true label yj using majority voting

βj := −
R∑
i=1

p(tij) ln p(t
i
j), αi := 1,

The initial value of βj is image j’s entropy. The higher the en-
tropy, the more uncertain the image.
Repeat:
E-step:

Qj(yj) :=
∏
i

p(yj |tj , αi, βj)

M-step:

αi := argmax
αi

∑
j

∑
yj

Qj(yj) ln
p(tj , yj |αi, βj)

Qj(yj)

We also optimize βj along with αi during M-step. However, the
goal is to get each labeler’s reliability, so we didn’t include it in
this step. For optimization, we take a derivative with respect to
βj and αi respectively.
Until convergence

s of real-world affective face and the lab-controlled posed
face guided by psychologist. Here, “cross-database” mean-
s we use all of the images from one database for training
and the images from the other for testing. In order to elimi-
nate the bias caused by different training size, the single-tab
subset of RAF-DB has been sub-sampled for experiment to
balance the size of two databases.

To ensure the generalization capabilities of the classifier-
s, we applied support vector machine for classification and
tried HOG descriptor [5] for representation. Specifically,
original images were first aligned to the size of 100×100.
Then, we got a 4000-dimensional HOG feature vector per
aligned image. Finally, SVM with RBF kernel implemented
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Figure 4. Confusion matrixes for cross-database experiments using
HOG features. The true labels (training data) are on the vertical
axis, the predicted labels (test data) are on the horizontal axis.

by LibSVM [4] was applied for classification. Parameters
were optimized using grid search.

We then performed a cross-database experiment based
on six-class expression. Multiclass support vector machine
(mSVM) and confusion matrix were used as the classifica-
tion method and the assessment criteria respectively. Fig-
ure 4 shows the results of this experiment.

Analyzing the diagonal of these two matrixes, we can
see that surprise, happiness and disgust are the top three
that have the highest recognition rates in both cases. This
result is in line with many single database tests based on
CK+, such as [26], [35] and [38]. After calculating the
average of the diagonals, Matrix I was detected with 62%
accuracy while Matrix II with only 39%, which indicates
that data collected from real world is more multiple and ef-
fective than lab-controlled one. This is particularly evident
in the expression of sadness, then happiness and surprise.
Besides, anger and disgust are usually confused with each
other in both cases, which conforms to the survey in [2].

In order to explain the phenomena above, a more de-
tailed research must be conducted to find out the specifical
differences of each expression between these two databas-
es. Therefore, a facial action coding system (FACS) anal-
ysis has been employed. FACS was first presented in [12],
where the changes on facial behaviors are described by a
set of action units (AUs). AUs of sub-sampled images in
RAF-DB were first labeled by our FACS coders. We then
quantitatively analyzed the AU presence for different emo-
tions in CK+ and RAF. Some examples from CK+ and RAF
are shown in Figure 5. Besides, probabilities of AUs’ oc-
currence for each expression from sub-sampled images in
RAF-DB have been shown in Table 1.

4. Deep Locality-Preserving Feature Learning

Besides the “in-the-wild” difficulties such as variable
lighting, poses and occlusions, real-world affective faces
at least pose two challenges that demand new algorithm-
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Figure 5. Comparison of six basic emotions from CK+ and RAF.
It’s evident that expression AUs in RAF are more diverse than
those in CK+.

Table 1. Probabilities of AUs’ occurrence for each expression in
RAF-DB
(%) AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU10 AU12 AU15 AU 17 AU20 AU25 AU 26 AU27

Sur 97 97 84 98 53∗

Fea 78 42 74 79 50 30∗ 61∗ 43∗

Dis 51 34∗ 89∗ 82 26 55∗

Hap 98 85 97 23

Sad 88 84 21∗ 54 49∗

Ang 96 72∗ 94 36 87 79∗ 72∗

The empty data indicates the probability is less than 10%

An asterisk(*) indicates the AU’s probability is quite different from CK+’s (at least 40% disparity).

s to address. First, as indicated by our cross-database s-
tudy, real world expression may associate with various AU
combinations that require classification algorithms to model
the multi-modality distribution of each emotion in the fea-
ture space. Second, as suggested by our crowdsourcing re-
sults, a large amount of real-world affective faces express
compound, or even multiple emotions. So traditional hand-
engineered representations which perform well on the lab-
controlled databases are no longer suitable for expression
recognition tasks in the wild.

Nowadays, DCNN has been proved to outperform hand-
crafted features on lager-scale visual recognition tasks. N-
evertheless, conventional DCNN uses only the softmax loss
layer to supervise the training process. The softmax layer
helps keeping the deeply learned features of different class-
es separable, however, still remains serious intra-class vari-
ation. On the contrary, facial expressions in real world show
significant intra-class difference on account of varied occlu-
sions, illuminations, resolutions and head positions. What’s
more, individual variation can also lead to big difference for
the same category expression, for example, laugh v.s. smile.
Hence, we proposed a novel DLP-CNN to address the am-
biguity and multi-modality of real-world facial expression-
s. In DLP-CNN, we added a new supervised layer on the
fundamental architecture shown in Table 2, namely locali-
ty preserving loss (LP loss), to improve the discrimination
ability of the deep features.

The basic idea is to preserve the locality of each sample
xi and make the local neighborhoods within each class as



Table 2. The configuration parameters in the fundamental architecture (baseDCNN).
Layer
Type

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Conv ReLu MPool Conv ReLu MPool Conv ReLu Conv ReLu MPool Conv ReLu Conv ReLu FC ReLu FC

Kernel 3 - 2 3 - 2 3 - 3 - 2 3 - 3 - -
output 64 - - 96 - - 128 - 128 - - 256 - 256 - 2000 - 7
Stride 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1
Pad 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0

compact as possible. To formulate our goal:

min
W

∑
i,j

Sij ||xi − xj ||22 (1)

where W is the network parameters, and the matrix S is a
similarity matrix. The deep feature x ∈ Rd denotes Deep
Convolutional activation features (DeCaf) [9] taken from
the final hidden layer, i.e., just before the softmax layer that
produces the class prediction. A possible way of defining S
is as follows.

Sij =

 1, xj is among k nearest neighbors of xi
or xi is among k nearest neighbors of xj

0, otherwise
(2)

where xi and xj belong to the same class of expression, k
defines the size of the local neighborhood.

This formulation effectively characterizes the intra-class
local scatters. Note that xi should be updated as the itera-
tive optimization of the CNN. To compute the summation of
the pairwise distance, we need to take the entire training set
in each iteration, which is inefficient to implement. To ad-
dress this difficulty, we do the approximation by searching
the k nearest neighbors for each sample xi, and the locality
preserving loss function of xi is defined as follow:

Llp =
1

2

n∑
i=1

||xi −
1

k

∑
x∈Nk{xi}

x||22 (3)

whereNk{xi} denotes the ensemble of the k nearest neigh-
bors of sample xi with the same class.

The gradients of Llp with respect to xi is computed as:

∂Llp

∂xi
= xi −

1

k

∑
x∈Nk{xi}

x (4)

In this manner, we can perform the update based on mini-
batch. Note that, the recently proposed center loss [43] can
be considered as a special case of the locality preserving
loss, if k = nc−1 (nc is the number of the training samples
in class c to which xi belong). While center loss simply
pulls the samples to a single centroid, the proposed locality
preserving loss is more flexible especially when the class
conditional distribution is multi-modal.

We then adopt the joint supervision of softmax loss
which characterizes the global scatter and the locality p-
reserving loss which characterizes the local scatters within
class, to train the CNNs for discriminative feature learning.

The objective function is formulated as follow: L =
Ls + λLlp, where Ls denotes the softmax loss and Llp de-
notes the locality preserving loss. The hyper parameter λ is
used to balance the two loss functions. Algorithm 2 sum-
marizes the learning process in the deep locality preserving
CNN.

Algorithm 2 Optimization algorithm of DLP-CNN.
Input: Training data {xi}ni=1,

n is the size of mini-batch
Output: Network layer parameters W

Initialize: t = 0
Network learning rate µ, hyper parameter λ, Network layer pa-
rameters W , softmax loss parameters θ, neighboring nodes k.
Repeat:
1: t = t+ 1
2: Computer the center of k-nearest neighbor for xi:
Cti =

1
k

∑n
j=1 x

t
jS

t
ij

3: Update the softmax loss parameters:
θt+1 = θt − µt ∂L

t
s

∂θt

4: Update the backpropagation error:
∂Lt

∂xti
=

∂Lt
s

∂xti
+ λ

∂Lt
lp

∂xti
5: Computer the network layer parameters:
W t+1 =W t − µt ∂L

t

∂W t =W t − µt
∑n
i=1

∂Lt

∂xti

∂xti
∂W t

Until convergence

5. Baseline System
To facilitate translating the research from laboratory en-

vironments to the real world, we performed two challenging
benchmark experiments on RAF-DB: 7-class basic expres-
sion classification and 11-class compound expression clas-
sification, and presented affiliated baseline algorithms and
performances. We also conducted comparative experiments
on two small and popular datasets, CK+ and JAFFE [28].

We followed up the experimental setup in cross-database
experiments, and tried LBP [33], HOG [5] and Gabor [23]
features. The LBP descriptor applied the 59-bin LBPu2

8,2

operator, and then concatenated the histograms from 10×10
pixel cells, generating a 5,900 dimensional feature vector.
The HOG feature used this shape-based segmentation di-
viding the image into 10×10 pixel blocks of four 5×5 pixel
cells with no overlapping. By setting 10 bins for each his-
tograms, we extract a 4000-dimensional HOG feature vec-
tor for each image. For Gabor wavelet, we used a bank of



Table 3. Basic expression class performance comparison of CK+,
JAFFE and RAF along with Compound expression performance
of RAF, based on LBP, HOG and Gabor descriptors, and SVM,
LDA+kNN classification. The metric is the mean diagonal value
of the confusion matrix.

basic compound
CK+ JAFFE RAF RAF

mSVM
LBP 88.92 78.81 55.98 28.84
HOG 90.50 84.76 58.45 33.65
Gabor 91.98 88.95 65.12 35.76

LDA
LBP 85.84 77.74 50.97 22.89
HOG 91.77 80.12 51.36 24.01
Gabor 92.33 83.45 56.93 23.81

40 Gabor filters at five spatial scales and eight orientation-
s. The downsample image’s size was set to 10*10, yielding
4000-dimensional features.

In order to objectively measure the performance for the
followers entries, we split the dataset into a training set
and a test set with the idea of five-fold cross-validation,
which means the size of training set is five times larger than
test set, and expressions in both sets have a near-identical
distribution. Considering expressions in the wild have
imbalanced distribution, the accuracy metric which is
especially sensitive to bias and no longer effective for
imbalanced data [15], is no longer used in RAF. Instead,
we use the mean diagonal value of the confusion matrix as
the ultima metric.

Basic emotions. In this experiment, seven basic
emotion classes were detected using the whole 15339
images from the single-label subset. The best classification
accuracy (output by SVM) was 72.71% for LBP, 74.35%
for HOG, and 77.28% for Gabor. Results declined to
55.98%, 58.45% and 65.12% respectively when using the
mean diagonal value of the confusion matrix as metric. To
assess the reliability of the basic emotion labels, we also
assigned a uniform random label to each sample, which
we call a naive emotion detector. And the best result for
the naive classifier was 16.07% when using Gabor feature,
which is much lower than the former value.

For comparison, we employed the same methods on
CK+ with person-independent 5-fold cross-validation and
JAFFE with leave-one-subject-out strategy. The results
shown in Table 3 certify that expressions in real world
are more difficult for recognition and the current common
methods which perform well on the existing databases
cannot solve the expression recognition problem in the
challenging real-world condition.

To evaluate effectiveness of different classifiers, we have
also trained LDA with nearest neighbor (NN) classification.
We found that LDA+NN were inferior to mSVM obviously

when training on RAF, a extremely large database. Nev-
ertheless, it performed better when training on small-scale
datasets (CK+ and JAFFE), even outperformed mSVM in
some cases. Concrete results can be viewed in Table 3.

Compound emotions. For compound emotions clas-
sification, we got rid of fearfully disgusted emotion as it’s
too few, leaving 11 classes of compound emotion, 3954
in total. The best classification accuracy (output by SVM)
was 45.51% for LBP, 51.89% for HOG, and 53.54% for
Gabor. Results declined to 28.84%, 33.65% and 35.76%
respectively when using the mean diagonal value of the
confusion matrix as metric. Again, to demonstrate the
reliability of the compound emotion labels, we computed
the baseline for the naive emotion detector, which declined
to 5.79% when using Gabor feature.

As expected, the overall performance dropped sig-
nificantly when more expressions are involved for
classification. The significantly lower results compared to
that of basic emotions indicate that compound emotions
are more difficult to detect and new methods should be
invented to solve this problem. Besides the multi-modality,
lack of training samples of compound expressions from
real world is another great technical challenge.

6. Deep Learning System
Nowadays, deep learning has been applied to lager-scale

visual recognition tasks and perform exceedingly well with
lager amounts of training data. However, fully-supervised
deep models are easy to be overfitting on facial expression
recognition task due to the insufficient training samples for
the model learning. Therefore, most deep learning frame-
works employed on facial expression recognition [22, 32,
36] are base on pre-trained models. These pre-trained mod-
els, such as VGG network [40] and AlexNet [21], are ini-
tially designed for face recognition, which are short of dis-
crimination ability of expression characteristic. So in this
paper, we directly trained our deep learning system on the
big enough self-collected database RAF from scratch, with-
out using other databases.

When conducting experiments, we followed the same
dataset partition standards, image processing methods and
classification methods as in the baseline system. Related
researches [9, 39] have proved that well-trained deep con-
volutional network can work as a feature extraction tool
with generalization ability for the classification task. Fol-
lowing up this idea, we first trained each DCNNs for basic
emotion recognition task, and then directly used the already
trained DCNN models to extract deep features for both ba-
sic and compound expressions. 2000-dimensional deep fea-
tures learnt from raw data were extracted from the penulti-
mate fully connected layer of the DCNNs and then classi-
fied by SVM.



Table 4. Expression recognition performance of different DCNNs on RAF. The metric is the mean diagonal value of the confusion matrix.

basic compound
Anger Disgust Fear Happiness Sadness Surprise Neutral Average Average

mSVM

VGG 68.52 27.50 35.13 85.32 64.85 66.32 59.88 58.22 31.63
AlexNet 58.64 21.87 39.19 86.16 60.88 62.31 60.15 55.60 28.22

baseDCNN 70.99 52.50 50.00 92.91 77.82 79.64 83.09 72.42 40.17
center loss 68.52 53.13 54.05 93.08 78.45 79.63 83.24 72.87 39.97
DLP-CNN 71.60 52.15 62.16 92.83 80.13 81.16 80.29 74.20 44.55

LDA

VGG 66.05 25.00 37.84 73.08 51.46 53.49 47.21 50.59 16.27
AlexNet 43.83 27.50 37.84 75.78 39.33 61.70 48.53 47.79 15.56

baseDCNN 66.05 47.50 51.35 89.45 74.27 76.90 77.50 69.00 28.23
center loss 64.81 49.38 54.05 92.41 74.90 76.29 77.21 69.86 27.33
DLP-CNN 77.51 55.41 52.50 90.21 73.64 74.07 73.53 70.98 32.29

From the results in Table 4, we have the following obser-
vations. First, DCNNs which achieve quite reasonable re-
sults for large-scale image recognition setting, such as VGG
network and AlexNet, are not efficient for facial expression
recognition. Second, all of the deep features learnt on RAF-
DB outperform the unlearned features used in the baseline
system by a significant margin, which indicates that deep
learning architecture is more robust and applicable for both
basic and compound expression. At last, our new locali-
ty preserving loss model achieves better performance than
the based one and the center loss one. Note that, the center
loss, which efficiently converges unimodal class, can help
enhance the network performance on basic emotion, but it
fails on compound emotion. This shows the advantage of
the locality preserving loss on multi-modal facial expres-
sion recognition, including both basic and compound one.

To see the generalization ability of our well-trained DLP-
CNN model on other databases, we then employed it to di-
rectly extract fixed-length feature of CK+ and SFEW 2.0
without finetune. For the lab-controlled databases CK+, we
followed the experimental principle in the baseline system.
For the real-world database SFEW 2.0, we followed the rule
in EmotiW 2015 [8], and the “SFEW best” is the result of
the single best model used in the winner [20] of EmotiW
2015. Note that, in [20], the Authors trained their model
with extra data from SFEW. From the comparison results
in Table 5, we can see that our network can also achieve
comparable or even better performance than other state-of-
the-art methods, not only for RAF, but also other databases.
This indicates that our proposed network can be used as an
efficient and effective feature extraction tool for facial ex-
pression databases, without a significant amount of time to
execute in traditional DCNNs.

7. Conclusions and Future Work

The main contribution of this paper is presenting a novel
optimized algorithm for crowdsourcing and a new locali-

Table 5. Comparison results of DLP-CNN and other state-of-the-
art deep learning methods on CK+ and SFEW 2.0.

AUDN

[25]

FP+SAE

[27]
[31]

SFEW best

[20]

DLP-CNN
(without finetune)

CK+ 93.70 91.11 93.2 – 95.78
SFEW 2.0 30.14 – 47.7 52.5 51.05

ty preserving loss layer for deep learning, based on a real-
world publicly available facial expression database RAF-
DB. The optimized algorithm helps to keep the best anno-
tated results from labelers. The new DCNN can learn more
discriminative feature for expression recognition task. The
RAF-DB contains, 1) 29672 real-world images labeled for
different expressions, age range, gender and posture fea-
ture, 2) a 7-dimensional expression distribution vector for
each image, 3) two different subsets: single-label subset,
including seven classes of basic emotions; two-tab subset,
including twelve classes of compound emotions, 4) loca-
tions of five manually accurate detect landmark points, 5)
baseline classifier outputs for basic emotions and compound
emotions. We hope that the release of this database will en-
courage more researches on the effect of real-world expres-
sion distribution or detection and be a useful benchmark re-
source for researchers to compare the validity of their facial
expression analysis algorithms in challenge conditions.
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