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Abstract—A binary descriptor typically consists of three stages: image filtering,

binarization, and spatial histogram. This paper first demonstrates that the binary

code of the maximum-variance filtering responses leads to the lowest bit error rate

under Gaussian noise. Then, an optimal eigenfilter bank is derived from a

universal assumption on the local stationary random field. Finally, compressive

binary patterns (CBP) is designed by replacing the local derivative filters of local

binary patterns (LBP) with these novel random-field eigenfilters, which leads to a

compact and robust binary descriptor that characterizes the most stable local

structures that are resistant to image noise and degradation. A scattering-like

operator is subsequently applied to enhance the distinctiveness of the descriptor.

Surprisingly, the results obtained from experiments on the FERET, LFW, and

PaSC databases show that the scattering CBP (SCBP) descriptor, which is

handcrafted by only 6 optimal eigenfilters under restrictive assumptions,

outperforms the state-of-the-art learning-based face descriptors in terms of both

matching accuracy and robustness. In particular, on probe images degraded with

noise, blur, JPEG compression, and reduced resolution, SCBP outperforms other

descriptors by a greater than 10 percent accuracy margin.

Index Terms—Face Recognition, local binary patterns, binary code learning,

face descriptor

Ç

1 INTRODUCTION

LOCAL descriptors are at the core of many computer vision tasks.
For example, local descriptors of regions of interest are widely
used to find correspondences between image regions (patches),
which is a key factor in a wide range of applications, ranging from
stereo matching [1] and multi-view reconstruction [2] to object
detection and alignment [3], [4]. Furthermore, encodings of local
descriptors are predominantly used for feature representation in
image and video retrieval [5], [6], as well as in object and scene rec-
ognition [7], [8]. Due to the importance of these issues, various
descriptors have been proposed with the aim of improving accu-
racy and efficiency. For example, regions of interest are typically
represented by handcrafted SIFT [3], SURF [9] and BRIEF [10]
descriptors and their variants. By end-to-end optimizing for avail-
able data, deep learning techniques, such as autoencoder and con-
volutional network, have recently become dominant for both local
descriptors [11], [12] and holistic representations [13], [14].

For face recognition, local binary patterns (LBP) is one of the most
popular local descriptors [15], [16], and it has motivated a large fam-
ily of successful handcrafted and learning-based face descriptors.
Some variants of LBP improve the representational power by decom-
posing an image into sub-band images before LBP description [17],

[18], whereas others change the topology of the neighborhood to
obtain greater diversity in sampling pattern shapes and sizes [19],
[20], [21], [22]. To enhance the discriminatory ability, ensemble
descriptors are designed by concatenating the histograms at land-
mark points and regular spatial cells [23], [24] or the local features are
extracted in multi-scale manners [20], [25]. With their adaptation to
specific datasets, learning-based descriptors have generally become
preferred in recent years. For example, local quantized patterns
(LQP) [26] apply a clustering-based codebook to encode the long
binary codes from extensive sampling pattern shapes and sizes. Dis-
criminant face descriptor (DFD) [27] and compact binary face
descriptor (CBFD) [28] also learn the local filters with objective func-
tions on discrimination, reconstruction, and code distribution.

Despite their success, many of the previous descriptors are vul-
nerable to image noise or degradation. Some pioneering works on
robust LBP descriptors [29], [30], [31], [32] have skilfully designed
robust encoders for binary patterns, but these works lacked suffi-
cient theoretical analyses. In this work, we revisit Ahonen and
Pietikainen’s interpretation of the LBP histogram as an approxima-
tion of the joint distribution of local derivative filtering responses
[33]. The framework helps us analyze the bit error rate of the LBP-
like descriptor, based on which we further demonstrate that the fil-
ters with maximum-variance responses lead to the most robust
binary code under additive Gaussian white noise.

Motivated by this optimality justification, we design a new
random-field eigenfilter (RF eigenfilter) bank by selecting the
orthonormal filters that produce the maximum-variance responses
under the assumption that the local patches are stationary random
fields. The novel compressive binary patterns (CBP) is proposed by
simply replacing the local derivative filters of LBP with a set of 6
RF eigenfilters, which characterize the most common local edge,
wedge, and bar structures that are stably preserved during image
contamination and degradation. Furthermore, a scattering operator
[34] is applied to extend the scope of the 6 eigenfilters and generate
a scattering CBP (SCBP) histogram to characterize more complex
and “fine-grained” structures.

Although our method is simple and handcrafted, it is very
effective for enhancing the robustness and informativeness of face
descriptor. On the standard FERET and LFW databases, the pro-
posed SCBP achieves better face matching accuracy than state-of-
the-art handcrafted and learned face descriptors using a relatively
low feature dimension. More importantly, to systematically evalu-
ate the robustness of the face descriptor, we extend the standard
FERET evaluation by superposing four types of common degrada-
tions, including Gaussian noise, Gaussian blur, JPEG compression, and
reduced resolution, on the probe images. In this evaluation, the pro-
posed RF-eigenfilter-based descriptors exhibit strong robustness to
all types of degradation, leading to a 10–30 percent accuracy gain
compared to the up-to-date learning-based descriptors, such as
DFD [27], CBFD [28], and handcrafted descriptors such as MD-
DCP [24]. Furthermore, on the challenging PaSC database with
real-world degraded images, a high-dimensional SCBP descriptor
achieves superior accuracy compared to the deep autoencoder
method and accuracy comparable to the VGG deep face descriptor.

2 ERROR ANALYSIS OF LOCAL BINARY PATTERNS

The LBP operator labels the pixels of an image by thresholding the
neighborhood of each pixel and considers the result as a binary
code. This operator can be interpreted as a three-stage local feature
description framework [33]: image filtering, binary encoding, and
spatial histogram. Under this framework, Ahonen and Pietikainen
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[33] showed that the LBP operator is equivalent to sign-based binary
encoding of the convolution output of a set of local derivative filters.
Unfortunately, due to the high correlation between neighboring
pixels of natural images, the responses of a local derivative filter
are mostly close to zero. These low-amplitude responses make the
sign-based binary code of LBP highly unstable under noise turbu-
lence, resulting in a noise-sensitive descriptor. Under the LBP-
based description framework, we explore how to design filters that
derive the optimal robust binary code.

Consider the problem of matching two image patches with a
robust binary code. Let X 2 Rd denote a vectorized image patch of
the template (gallery) image, and let Y 2 Rd denote the correspond-
ing patch (within the same spatial cell for histogram counting) of
the test image. We assume that the difference between the template
image and test image can be modeled by the following additive
noise model: Y ¼ Xþ Z, where Z is the variation term due to image
sensor or encoding issues, such as Gaussian noise, blur, compres-
sion, and low resolution. In face recognition, these noise or degra-
dations are superposed on many intra-class variations in poses,
expressions, illumination, makeup, ages, etc [35], [36], [37].

In the image filtering stage, there are K filters denoted as a
stacked filter matrix F ¼ ½f1; . . . ; fK � 2 Rd�K , where fi is the ith
vectorized image filter. For the ith filtering response, we have
fTi Y ¼ fTi Xþ fTi Z. In the binary encoding stage, the LBP descriptor
simply uses the component-wise sign function

B ¼ sgnðFTXÞ 2 f1; 0g (1)

B0 ¼ sgnðFTYÞ 2 f1; 0g; (2)

with Bi ¼ sgnðfTi XÞ and B0
i ¼ sgnðfTi YÞ, 1 � i � K, as the ith bit of

the binary patterns. The sign function divides each dimension of the
filter bank output into two bins, and theK-dimensional output space
is uniformly divided into 2K subspaces. Whether the corresponding
patch of the test image can match the template patch is determined
by the amplitude of the noise component. Let ~Xi ¼ fTi X and
~Zi ¼ fTi Z denote the ith filtered random variables. The error proba-
bility of two corresponding bits is equal to the probability that the
sign of ~Xi is altered by the additive noise ~Zi, i.e.,

pi ¼ PBiB
0
i
fBi 6¼ B0

ig (3)

¼ Pf ~Xi > 0; ~Xi þ ~Zi < 0g þ Pf ~Xi < 0; ~Xi þ ~Zi > 0g: (4)

To conduct an optimal analysis, we assume that the vectorized
image patch follows a Gaussian distribution X � Nð0;SXÞ, and in
the testing stage, the patches are contaminated by additive Gauss-
ian white noise Z � Nð0; �2IÞ, where I is an identity matrix. Then,
their filtering responses also have a Gaussian distribution, i.e.,
~Xi � Nð0; s2

i Þ and ~Zi � Nð0; �2Þ, which gives rise to the signal-to-
noise ratio of the ith filter response as follows:

SNRi ¼ s2
i

�2
; i ¼ 1 � � �K; (5)

where s2
i is the variance of the ith filter response. Based on these

assumptions, we can compute the ith bit error rate, denoted as pi,
as follows:

pi ¼ PBiB
0
i
fBi 6¼ B0

ig (6)

¼ 2

Z 1

0

Z �~xi

�1
fð~zi; �2ÞÞd~zi

� �
fð~xi; s2

i ÞÞd~xi (7)

¼ 2

Z 1

0

Q
~xi

�

� �
fð~xi; s2

i Þd~xi (8)

¼ 2

Z 1

0

Q t
ffiffiffiffiffiffiffiffiffiffiffiffi
SNRi

p� �
fðt; 1Þdt; (9)

where fð~xi; s2
i Þ is the pdf of the distribution Nð0; s2Þ and the last

step is due to the change of variable: ~xi ¼ sit. Since Qð�Þ is a
decreasing function, pi is a decreasing function of SNRi. According
to Eq. (5), the filter with the maximum-variance response leads to an opti-
mal robust binary code with the lowest bit error rate.

If the filters are orthogonal, then the Gaussian-distributed filter-
ing responses ~Xi are uncorrelated and also independent. The prob-
ability that the K-bit binary codes are fully matching can be
approximated as follows:

PfB ¼ B0g 	 PK
i¼1ð1� piÞ: (10)

The binary code matching rate is apparently a decreasing function
of pi and thus an increasing function of SNRi. For face description,
the image is divided into spatial cells, and histograms of each cell
are computed independently [15], which are then concatenated to
form a global description. A high pattern matching rate between
the template and degraded patches would typically lead to robust
matching of the histogram sequences between images, leading to a
robust image matching algorithm.

3 FROM LBP TO CBP (COMPRESSIVE BINARY

PATTERNS)

This section introduces our design principle and implementation of
CBP, which is a generalized form of LBP that aims to address its
limitations on noisy and low-quality images. CBP is dedicated to
maintaining the simplicity, low-dimensionality and learning-free
advantages of LBP, which differentiates CBP from the sophisti-
cated learning-based descriptors.

3.1 Optimal Design of Filter Bank for Binary Code

Our design principle of the filter bank for binary patterns considers
both the robustness for noise resistance and the compactness for
information preservation. First, the variances of the filter responses
should be as large as possible to minimize the error rate of the
binary codes under noise disturbance. The SNR of each response
SNRi ¼ varðfTi XÞ=varðfTi ZÞ is maximized. Under the Gaussian
patch and noise assumptions, the SNR can simply be represented
as follows:

SNRi ¼ fTi SXfi
�2

; (11)

Second, to facilitate the following spatial histogram, the number of
filters used to describe the image patch must be as small as possible
to make the histogram compact. To achieve this goal, we aim to
design a filter bank f1; . . . ; fK such that the filter responses are sta-
tistically uncorrelated. This can be naturally fulfilled by restraining
the filters to be mutually orthogonal. Therefore, robustness and
compactness can be simultaneously optimized by the K eigenvec-
tors corresponding to the first K largest eigenvalues of the follow-
ing eigenproblem

SXf ¼ gf; (12)

where g is the eigenvalue (indicating the SNR) associated with
eigenvector f .

This kind of eigenvector is known as “eigenfilter” in the litera-
ture. The concept of eigenfilter was initially proposed by Ade [38]
in 1983, and has since been widely used in texture analysis [39],
[40] and object tracking [41] and recognition. A comparative study
[42] indicated that the eigenfilter is optimized with respect to
image representation but not discrimination. However, our analy-
sis reveals that they are robust to noise and degradation, particu-
larly when used for binary encoding. Many works have proposed
extending the basic eigenfilter. Binarized statistical image feature
(BSIF) [43] applies independent component analysis after whitened
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PCA to learn the independent binary codes. PCANet applies eigen-
filters to learn the feature maps in the deep architecture [44]. CBFD
imposes additional constraints on the code distribution for
enhanced compactness. Gabor-PCA filters are learned by PCA on
the local patches of Gabor-filtered images [45]. In contrast to these
variants of eigenfilters that learn from image patches, we aim to
design the filters through general knowledge of the pixel correlations.

To reduce the chance of overfitting, our design of the optimal
filters begins with the basic assumption that the local image patch
is a realization of a random field, where the correlation coefficient
between adjacent pixel values is r and the variance of each pixel is
s2. Without loss of generality, we can also assume that s2 ¼ 1. The
pixel covariance sij depends on the distance between pixel loca-
tions Pi and Pj. Given the r representing the correlation between
neighboring pixels, the pixel covariance matrix can be computed
as follows:

Sij ¼ rkPi�Pjk2 ; (13)

where k � k denotes the L2 norm. The designed principal compo-
nents (in image form) of 3 � 3, 5 � 5, 7 � 7, and 9 � 9 random
fields with r ¼ 0:95 are shown in Fig. 1. These components are
ordered by their variance (by column and then by rows). The
first few components are composed of a small number of low-
frequency components, displaying a certain oriented structure.
This result indicates that the lowest spatial frequencies account
for the greatest part of the variance in the random field. For
decreasing variance, the spatial frequency increases since the
spectral power of the natural images decreases with power law
of the frequency [46]. Surprisingly, the major eigenfilters exhibit
an invariant organization regardless of the filter size: principal
component (PC) 1 is a constant-like component. PCs 2 and 3 are
rotated versions of the same “edge”, PCs 7 and 8 are rotated ver-
sions of the same “bar”, and PCs 4 and 6 are two versions of the
same “wedge”. PC 5 is a Gaussian-like “blob”. As illustrated in
Fig. 2, the corresponding eigenvalue spectra exhibit two pla-
teaus on indices 2–3 and 7–8, where neighboring (orthogonal)
PCs with identical eigenvalues span a space modeling the rota-
tion invariance of the random field.

3.2 Compressive Binary Patterns (CBP)

Motivated by the above optimal design principle, CBP replaces the
local derivative filters of LBP with the RF eigenfilters in the image
filtering stage and applies the same binary coding and spatial histo-
gram procedure to retain the simplicity and efficiency of the LBP
descriptor. The term “compressive” emphasizes that the RF eigenfilters
generate compressive responses to efficiently represent the local image char-
acteristics. The designed pipeline is illustrated in Fig. 4, and the
computational procedure is detailed in Algorithm 1. In this algo-
rithm, the patchmean is subtracted in (14) before filtering to achieve
enhanced invariance. The image filtering is conducted by the vector
inner product in (15), which aims to detect the patterns in F that are
stably preserved during image contamination and degradation. In
each preassigned cell, the histogram of binary code, i.e., hi, approxi-
mates the joint distribution of the detected patterns. Finally, a con-
catenation of these histograms forms the CBP descriptor.

Algorithm 1. Compressive Binary Patterns (CBP)

Input: Input image. The K compressive filters denoted as
F ¼ ½f1; . . . ; fK � 2 Rd�K , where fi is the ith vectorized compres-
sive filter computed by Eq. (12). TheN pre-defined cells by reg-
ularly sampling on the image or around landmarks.
Output: The feature vector for the CBP descriptor.
1: for every pixel location ðu; vÞ do
2: Extract the local patch and normalize the vectorized

image patch by

Xu;v ¼ Xu;v �mu;v1 (14)

where mu;v is the mean value of the vector Xu;v and 1 is an
all-ones vector.

3: Compute theK responses of the compressive filters on
the local patch and convert them to binary code Bu;v by
a threshold of zero as

Bu;v ¼ sgnðFTXu;vÞ (15)

4: Convert the binary code Bu;v to a decimal number
Du;v 2 ½0; 2K � 1�.
end for

5: for i ¼ 1; . . . ; Nth cell do
6: Count the histogram (denoted as hi) with 2K bins of the

decimal values within the cell region.
end for

7: Concatenate the histograms of all N cells to form a single
output descriptorHCBP ¼ h1; . . . ; hN½ �.

Compared with the commonly used local derivative filters [15],
derivative of Gaussian [24], and Gabor-like filters [33], the

Fig. 1. The eigenvectors (displayed in image form) computed from 3�3, 5�5, 7�7,
and 9�9 random fields with a neighboring correlation coefficient of 0.95. The
eigenvectors are arranged according to decreasing eigenvalues. Regardless of
the size of the random field, the first few eigenfilters display identical primitive
structures that are useful for robust and compact feature description.

Fig. 2. Eigenvalue spectrum computed from 3�3, 5�5, 7�7, and 9�9 random
fields with a neighboring correlation coefficient of 0.95.
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designed RF eigenfilters have two advantages. First, they are infor-
mation preserving because they pass most energy through to the
following binary coding stage. Hence, CBP encodes sufficient
information by a small number of filter responses, resulting in a
compact binary code. Second, they are noise resistant because
small noise turbulence does not change the sign of the high-
amplitude responses. In addition, the degraded images commonly
preserve the low-frequency patterns (detected by RF eigenfilters)
but lose high-frequency details (detected by derivative filters). In
this sense, the CBP descriptor may be robust and invariant to
image degradations, although we only justified its optimality
under restrictive Gaussian assumptions.

In our implementation, the CBP descriptor adopts K ¼ 6 RF
eigenfilters of size 7 � 7, i.e., PCs 2, 3, 4, 6, 7, and 8, as illustrated in
Fig. 3. Note that PC 1 and PC 5 are discarded to keep a short coding
length because they cannot characterize explicit local structures.
The selected eigenfilters are computed in terms of r ¼ 0:95 in
Eq. (13), but note that these leading eigenfilters are (roughly)
invariant to r, possibly suggesting that they characterize the intrin-
sic structures of pairwise correlations.

3.3 Scattering Compressive Binary Patterns (SCBP)

The 6 selected RF eigenfilters are well adapted to detect primitive
elements (edge, wedge, and bar), but they may not have sufficient
frequency and directional resolution to distinguish fine-grained
details of facial structures. A straightforward solution is to apply
more eigenfilters with higher frequency and directional resolution,
such as the filters shown in the second and third rows of Figs. 1b,
1c, 1d. However, the high-frequency eigenfilters generally produce
low-amplitude responses, and their signs are easily altered by
noise. To avoid introducing these noise-sensitive eigenfilters, we
apply scattering-like operators [34] to design an enhanced descrip-
tor called SCBP. Using CBP as the basic module, SCBP consists of
two layers, where the term “scattering” vividly describes the expan-
sion process from a single image (first layer) to a group of feature
maps (second layer). The designed pipeline is illustrated in Fig. 4,
and the computational procedure is detailed in Algorithm 2.

In our implementation, the first layer convolves K ¼ 6 RF
eigenfilters on input image, and outputs the family of filtered
images (feature maps), as well as the first-layer CBP histogram
sequence HCBP . In the second layer, CBP histogram sequences
H

ð1Þ
CBP ; . . . ; H

ðKÞ
CBP , are extracted separately from each filtered image

using the same filter bank convolutions. In this layer, the filter
responses come from the sequential convolution of two filters, and
the binary code actually characterizes the co-occurrence of two
convolved patterns. As shown in Fig. 5, the second-layer binarized
filtered images in (b) characterize richer details than the first-layer
ones in (a). Finally, the first-layer and second-layer histogram
sequences are concatenated to yield HSCBP that characterizes both
the primitive and complex structures of the image.

Algorithm 2. Scattering Compressive Binary Patterns (SCBP)

Input: Input image. The K compressive filters. The N pre-
defined cells by regular sampling on the image or around
landmarks.
Output: The feature vector for the SCBP descriptor.
1: Extract the CBP descriptor of the input images, denoted as

HCBP , according to Algorithm 1.
2: Save theK intermediate filtered images before binarization.
3: for i ¼ 1; . . . ;Kth filtered image do
4: Extract the CBP descriptor of the ith filtered image,

denoted asH
ðiÞ
CBP , according to Algorithm 1.

end for
5: Concatenate theK þ 1 CBP descriptors to form a single

SCBP descriptor.

HSCBP ¼ HCBP ;H
ð1Þ
CBP ; . . . ; H

ðKÞ
CBP

h i
: (16)

Note that the two-layer scattering convolutions by K filters of
size L� L are equivalent to convolutions by K2 filters of larger
size of ð2L� 1Þ � ð2L� 1Þ.1 However, there are three advantages
by using the scattering convolution. First, it effectively controls the
complexity of the (equivalently larger-size) filters to reduce the
chance of overfitting. Specifically, the second-stage convolution
only processes the feature maps passing through the first layer,
which has filtered out the high-frequency noise and distortion. As
a result, the second-layer encoding can distinguishe the facial
details without the risk of matching noisy components. Second, it
ensures that the CBPs of second layer are extracted from K uncor-
related filtered images, although the orthogonal property does not
hold for the (equivalently larger-size) filters across different CBPs.
Finally, the scattering operator reduces the convolution complexity
from ð2L� 1Þ2 to 1þ 1

K

	 

L2.

In addition to the compact and robust binary code, RF
eigenfilter-based binary patterns also benefit from good code utiliza-
tion, making effective use of the available codes to avoid collisions
[47]. Because local face patches easily yield conflicted binary code,
sufficient code utilization is important to distinguish the fine-

Fig. 4. The designed pipeline of CBP and SCBP descriptors with six primitive fil-
ters, where the CBP is a basic module of SCBP.

Fig. 3. Visualization of the random-field eigenfilters computed from various correla-
tion coefficient r. They consist of nearly identical structures, including two edge fil-
ters, two wedge filters, and two bar filters.

Fig. 5. Binarization of the filtered images of (a) first layer and (b) second layer of
SCBP.

1. We would like to thank the anonymous reviewer who indicates this
property.
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grained difference between similar-looking faces. As shown in
Fig. 6, handcrafted binary codes are generally unevenly distrib-
uted, but SCBP yields evenly distributed binary code. In contrast
to the codebook-learning-based method [28], SCBP simply binar-
izes the responses by a threshold of zero. This indicates that the
responses roughly follow a Gaussian-like distribution (or other
axis-symmetric distributions) in Rd [47], and each of the K orthog-
onal RF eigenfilters functions as a hyperplane to divide equally the
ensemble of local patches.

4 EXPERIMENTS

In this section, we evaluate the effectiveness and robustness of the
proposed CBP/SCBP using the FERET [35], LFW [36], and PaSC
[37] databases.

4.1 Comparison with Other Nonstatistical
Face Descriptors

The first experiment evaluates the discriminative power of the RF
eigenfilters for face description. Our experiment follows the standard
FERET data partitions: fa (gallery) set, fb probe set taken with alterna-
tive expressions, fc probe set taken under different lighting condi-
tions, dup1 probe set taken at different times, and dup2 probe set
taken at least a year later. As shown in Fig. 7, fb and fc sets contain
only a single-source variation in expression or illumination, but dup1
and dup2 sets are more difficult because they involve blended varia-
tions in expression, illumination, makeup, and facial shape as time
passes. Facial images are first aligned by two eye centers and then
normalized to a size of 128�128 for studying feature descriptors. Fol-
lowing the criterion in [17], [48], the block-weighted histogram inter-
section is applied tomeasure the distance between facial images.

We first evaluate the effectiveness of RF eigenfilters by replac-
ing them with the same number of PCA-learned and ICA-leaned
filters in the CBP descriptor. These filters are learned from 50,000
random patches of FERET training images, as detailed in [43]. The
results in Table 1 show that the proposed RF eigenfilters perform
better than the PCA-learned filters, followed by the ICA-learned fil-
ters. The worse performance may because that the learned filters
are easily fit to harmful variance from image noise or intra-class
variations. Table 2 further compares our methods with other hand-
crafted descriptors. In addition to other previous LBP variants,
CBP also outperforms the recently proposed DCP by 3–4 percent
on average, although its feature size, i.e., 64 histogram bins, is only
one eighth of DCP, i.e., 512 bins, which suggests that the RF eigen-
filters are more compressive and discriminative than the dual-cross
patterns for feature description.

Through the scattering operator on CBP, SCBP notably
increases the average accuracy from 88 to 92 percent using a similar
feature dimension (CBP with 16 � 16 non-overlapped cells and
SCBP with 8 � 8 non-overlapped cells), clearly showing the dis-
criminative power of the concatenated second-layer histograms on
the fine-grained structures. Note that small cell size is important to
CBP because RF eigenfilters cannot capture fine-grained details. Its
accuracy reduces to 80 percent with 8�8 cells. SCBP performs the
best on all four probe sets compared to the other descriptors,
including the very-high-dimensional descriptors extracted from
4-directional gradient images (MD-DCP) and 40 Gabor-filtered
images (LGBP). Note that SCBP encodes the joint distribution of
the six responses of the eigenfilter bank, whereas MD-DCP, LGBP
and GVLBP encode the filtered images individually. The higher
accuracy suggests that the coding scheme of SCBP not only reduces
dimensionality but also encodes the co-occurrence of filtering
responses, which is more important for recognition.

Due to the blended variations of the duplicate sets, the accuracy
of many descriptors drops severely. In contrast, the proposed
descriptors obtain relatively stable performance on them. This
clearly shows that 1) RF eigenfilters are robust to complex image
variations, not only for Gaussian noise. 2) scattering architecture
can characterize informative features at a finer scale, and at the
same time, retain the robustness of the descriptor. It is possible that
the stable performance comes from the large filter size, since the
scatter convolution of two 7 � 7 filters is equivalent to a convolu-
tion by a single 13 � 13 filter. To test this possibility, we enlarge RF
eigenfilters from 7 � 7 to 13 � 13 for CBP, but the accuracy is
severely reduced by more than 10 percent, which indicates that
large-size filters miss some discriminative localized structures.
Concatenating two CBPs with 7 � 7 and 13 � 13 filters to form a
16,384 � 2 dimensional feature (with higher dimension than SCBP)
only yields an accuracy about 89 percent. These results suggest the
scattering architecture provides a distinctive enhancement for rec-
ognition, rather than just benefiting from large filter size.

4.2 Comparison with the State-of-the-Art
Face Descriptors

This experiment evaluates whether the proposed method can gen-
eralize well to the web-collected LFW database [36], which contains
more than 13,000 face images of 5,749 subjects with various

Fig. 6. The bin distributions of (a) uniform LBP and (b) SCBP counted in the 1196
FERET gallery images. The 59 bins of uniform LBP are unevenly distributed, but
the 64 bins of SCBP are evenly distributed.

Fig. 7. Example images of different subsets of the FERET database.

TABLE 1
Comparison of FERET Recognition Rates (%) of Different

CBP Descriptors Using Different Eigenfilters

Filters fb fc dup1 dup2 avg

PCA learned [38] 96.3 92.3 79.8 77.9 86.6
ICA learned [43] 96.5 91.3 75.8 73.9 84.4
RF eigenfilter 97.5 93.3 82.8 79.9 88.4

TABLE 2
Comparison of FERETRecognitionRate (%)with State-of-the-Art

Handcrafted Feature Descriptors UsingWeightedHistogram Intersection

Descriptor Dims. fb fc dup1 dup2 avg

LBP [15] 2,891 97.0 79.0 66.0 64.0 76.5
LDP [18] 458,752 94.0 83.0 62.0 53.0 73.0
LGBP-M [17] 2,252,800 98.0 97.0 74.0 71.0 85.0
LGBP-P [17] 2,252,800 96.0 94.0 72.0 69.0 82.6
GV-LBP-M [48] 105,600 98.1 98.5 80.9 81.2 89.7
GV-LBP-P [48] 105,600 97.9 99.0 81.9 83.8 90.7
DCP [24] 131,072 97.4 79.4 80.3 80.3 84.4
MD-DCP [24] 131,072 98.2 98.5 83.7 83.3 90.9

CBP 16,384 97.5 93.3 82.8 79.9 88.4
SCBP 28,672 98.9 99.0 85.2 85.0 92.0
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expressions, ages, illuminations, resolutions, and backgrounds.
Our experiment is conducted under an image-restricted setting
with label-free outside data [36]. We first crop LFW-a aligned
images into 150 � 130, and then extract CBP by 16 � 16 and SCBP
by 8 � 8 nonoverlapped cells. We also implement three typical
learning-based face descriptors by following the alignment and
parameter settings reported in their original papers. Among them,
Fisher vector face [49] applies dense SIFT to extract informative
features and encodes both the first- and second-order quantities of
the GMM codebook. DFD [27] and CBFD aim to learn region-spe-
cific filters to extract features and learn a k-means codebook to
encode the long binary code.

Following common practice, we first apply PCA to reduce these
features to 300 dimensions and then use three popular methods
[50], [51], [52] to learn a distance metric to compute the similarity
of each face pair. Cosine similarity metric learning (CSML) aims to
learn a metric space in which cosine similarity performs well for
verification [50]. Sub-SML learns the metric by solving a convex
optimization problem [51]. Discriminative deep metric learning
(DDML) [52] learns a set of hierarchical nonlinear transformations
to project face pairs into the same feature subspace. The final com-
parative performances are shown in Table 3 along with the feature
dimensions and extraction run times. Under all three tested met-
rics, the proposed SCBP descriptor obtains test performance using
the lowest feature dimension. Although learning-based descriptors
are commonly preferred, SCBP demonstrates that handcrafted
descriptors can achieve competitive performance by considering
the robustness of the designed filter and the distinctiveness of the
scattering architecture.

Table 4 compares our method with other face verification meth-
ods in terms of the performance reported in the original papers,

which also shows that SCBP achieves better accuracy than many
face descriptors with complicated parameter tuning. Some deep-
learning based descriptors have been tested on this restricted pro-
tocol (where outside training data is not allowed). For example, a
latest auto-encoder based method called class sparsity based
supervised encoder [61] obtains 0.87 accuracy (without ensembles),
and the local convolutional restricted Boltzmann machines (RBMs)
[62] reports 0.8777 accuracy. Their performance is worse than
SCBP, although they potentially learn deep representations that
capture higher-order statistics than hand-crafted image descrip-
tors. The off-the-shelf VGG face descriptor [63] can yield much
higher accuracy, but it violates the restricted protocol by using mil-
lions of labeled outside training data. The results clearly suggest
that although the optimality of RF eigenfilter is derived under the con-
strained Gaussian assumptions, it indeed generalizes well on the real-
world complex conditions. Fig. 8 illustrates typical image pairs from
the error cases, and they are mostly caused by large variations
such as pose, occlusion, and makeup.

4.3 Extended Evaluation of the Robustness of
Face Descriptors

This experiment evaluates the robustness of the descriptors by
extending the FERET evaluation with synthetic noise and degrada-
tion. For clarity, we express the interference of face recognition
h ¼ hf þ hq [64], where hf denotes facial variations such as mis-
alignment, expression, illumination, and age and hq denotes the
image variation due to sensor or coding-related issues, such as
Gaussian noise, blur, compression, and low resolution. Most stud-
ies on the FERET database focused only on the effect of hf , whereas
our extended experiments study both the pure effect of hq and the
superposed interference of hf þ hq . For a comprehensive study, we
synthesize four types of noise or degradations that are most com-
mon in real-world systems but that have not appeared in the stan-
dard databases.

Specifically, we generate the following versions of probe sets: 1)
five levels of Gaussian noise. The images are normalized in the range
of ð0; 1Þ, and then we apply additive Gaussian noise with zero mean
and standard derivations of s ¼ 0; 0:01; 0:02; 0:03; 0:04; 0:05; 2) four
differentGaussian blur sets of gallery and four probes using a Gauss-
ian kernel of size 10 � 10 with s ¼ f2; 4; 6; 8g; 3) four different com-
pressed images using MATLAB’s JPEG codec of quality 60, 45, 30,
and 15; and 4) four different low-resolution sets of test images by first
downsampling the images by ratios of 2, 3, 4, and 5 and then inter-
polating them to the original resolution by the “nearest” method in
MATLAB. Example probe images are shown in Fig. 9, and as shown
in this figure, these degraded faces are recognizable by humans and
are very common in real-world surveillance scenarios. Therefore, it
is important to study how the accuracy of the face descriptor
changes under these degradations.

For comparison purposes, we also implement several commonly
used local descriptors: LBP [15], DCP [24], MD-DCP [24], NRLBP
[31], HOG [65], ExHOG [66], Gabor [67], DFD [27], and CBFD [28].

TABLE 3
Comparative LFW Performance of Different Face Descriptors Under the
Image Restricted Setting Using Three Widely Used Learned Metrics

Methods Dim. Time
CSML
[50]

S-SML
[51]

DDML
[52]

Fish.Vec [49] 67,584 3533 0.8776 0.8834 0.8897
DFD [27] 50,176 1432 0.8482 0.8464 0.8572
CBFD [28] 32,000 254 0.8634 0.8712 0.8732
CBP 16,384 84 0.8408 0.8412 0.8460
SCBP 28,672 564 0.8812 0.8868 0.8932

The dimension and run time (ms) are also presented.

TABLE 4
Comparisons of the Mean Verification Rate and
Standard Error (%) with the State-of-the-Art

Results on LFW Under the Image Restricted Setting

Methods 10-Fold Accuracy

V1-like/MKL [53] 0.7935 
 0.0055
MRF-MLBP [54] 0.7908
 0.0014
Fisher vector faces [49] 0.8747 
 0.0149
Eigen-PEP [55] 0.8897
 0.0132
Single LE + holistic [56] 0.8122
 0.0053
LBP + CSML [50] 0.8557
 0.0052
LARK supervised [57] 0.8510 
 0.0059
DML-eig SIFT [58] 0.8127 
 0.0230
Pose Adaptive Filter [59] 0.8777 
 0.0051
OCBP+TSML [60] 0.8710 
 0.0043
PCANet [44] 0.8628
 0.0110
Gabor-PCA [45] 0.8863
 0.0140
DFD [27] 0.8402
 0.0140
CBFD [28] 0.8757
 0.0143
Supervised-DAE [61] 0.8702 
 0.0183
Convolutional-DBN [62] 0.8777 
 0.0062
CBP 0.8460
 0.0167
SCBP 0.8932
 0.0134

Fig. 8. Examples of the error cases of our method, where ‘FP’ indicates the false
positive pair and ‘FN’ indicates the false negative pair.
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Specifically, the LBP descriptor adopts the LBPU2
8;2 operator [15] in

16�16 cells of 59 bins, resulting in a 15,104 (16�16�59)-dimensional
feature vector. The DCP descriptor is 131,072 dimensional with 16�
16 cells of 512 bins. The MD-DCP descriptor is 131,072 dimensional
with 8 � 8 cells on the 4 filtered images. The uncertainty threshold
of NRLBP is empirically set to t ¼ 0:5s for the images contaminated
by the Gaussian noise of standard deviation s. The HOG [65]
descriptor first divides the image into multiple 16 � 16 cells, and a
local histogram of 18 signed gradient directions over the pixels of
the cell are accumulated for each cell. “L2-Hys” contrast normaliza-
tion with a threshold of 0.2 is applied over each block of 2 � 2 cells.
The combined histogram entries form the final 4,608 (16� 16 � 18)-
dimensional feature vector. ExHOG doubles the number of bins of
the HOG histogram to enhance robustness [66]. The 10,240-dimen-
sional Gabor feature [67], 50,176-dimensional DFD [27] and 32,000-
dimensional CBFD [28] are extracted according to their original
papers. All the tested descriptors are extracted from the same
aligned face images and used for face identification using parame-
ter-free linear regression analysis [68].

Fig. 10 presents the recognition accuracy of ten descriptors as a
function of the standard deviation of Gaussian noise. This figure
shows severe performance deterioration with increasing noise,
which suggests that the descriptors are more sensitive to the super-
posed noise with real-world variations. As expected, the traditional
LBP descriptor performs the worst across various noisy conditions.
NRLBP largely improves LBP by the error-correction encodingwith
an increase of 10–20 percent accuracy observed in Fig. 10. DCP
indeed enhances the accuracy of LBP by approximately 30 percent
with its local sampling of dual-cross patterns in a large neighbor-
hood, and MD-DCP further improves the noise robustness by the
first derivative of the Gaussian operator [24]. The quantized

gradient orientation of HOG appears to be less sensitive to noise
than the thresholded derivative of LBP, and ExHOG further
improves the robustness to some extent by doubling the histogram
bins.

Unfortunately, these handcrafted improvements are not suffi-
cient to handle the probe image with severe noise, and their perfor-
mance begins to decrease when the noise s > 0:02. When the
noise s > 0:04, Although its performance is common on the origi-
nal image, the downsampled Gabor feature outperforms all other
previously proposed handcrafted and learning-based descriptors,
which clearly supports the filter based approach for robust face
descriptor [69]. In general, CBP achieves much better accuracy
than LBP/NRLBP/DCP, clearly validating the robustness of the
RF eigenfilters. This robustness is further enhanced by the scatter-
ing operator. Compared with Gabor feature, CBP and SCBP are
more discriminative to the original image. As the noise level
increases, the relative performance gain of the SCBP descriptor
over the others become increasingly more significant. It can also be
observed that the accuracy loss of SCBP is less than CBP. This
observation indicates that the second-layer encoding is very robust
to the image noise by focusing only on the low-frequency feature
maps generated by RF eigenfilter.

Table 5 shows that SCBP and CBP exhibit much better robust-
ness than the other descriptors under image blur, compression,

Fig. 9. Examples of original and degraded images used in our extended FERET
evaluation. The last four columns correspond to the most severe degrees of
Gaussian noise, Gaussian blur, JPEG compression, and reduced resolution
applied on the probe images.

Fig. 10. Comparative FERET performance of face descriptors as a function of the
standard deviation of additive Gaussian white noise. The average accuracy across
the four probe sets is reported.

TABLE 5
Comparative Recognition Rates (%) of Extended FERET Evaluation on the Robustness to the Three Types of Common Degradations

Feature Basic Gaussian Blur JPEG Compression Reduced Resolution Summarized

Accuracy1 2 4 6 8 60 45 30 15 1/2 1/3 1/4 1/5 Accuracy2

LBP [15] 91.8 -3.7 -18.0 -36.1 -52.0 -5.0 -8.4 -15.9 -43.9 -2.4 -47.4 -86.3 -90.1 57.7 (-34.1)
DCP [24] 93.3 -2.1 -10.9 -30.5 -48.3 -1.7 -2.4 -6.0 -19.8 -1.5 -4.1 -36.6 -64.5 74.3 (-19.0)
MD-DCP [24] 95.9 -3.4 -8.7 -17.0 -29.4 -1.1 -1.9 -4.0 -13.6 -1.5 -6.0 -20.7 -38.9 83.7 (-12.2)
HOG [65] 90.2 -3.1 -11.8 -26.0 -43.1 -3.8 -5.8 -10.3 -30.5 -6.0 -24.3 -54.5 -69.9 66.1 (-24.1)
ExHOG [66] 92.1 -1.7 -8.8 -22.4 -38.7 -2.1 -4.4 -10.4 -30.4 -4.5 -25.3 -52.1 -68.6 69.7 (-22.4)
Gabor [67] 89.9 -5.2 -12.3 -20.5 -30.1 -1.4 -2.5 -4.6 -13.9 -2.2 -8.7 -24.9 -46.2 75.5 (-14.4)
LGBP [17] 96.1 -2.7 -6.6 -14.7 -28.6 -0.9 -1.7 -3.3 -9.3 -1.3 -5.1 -16.6 -43.4 84.9 (-11.2)
DFD [27] 94.7 -4.3 -17.2 -70.5 -91.3 -1.3 -3.3 -6.5 -27.6 -1.3 -8.7 -59.7 -87.4 63.1 (-31.6)
CBFD [28] 96.0 -0.3 -3.7 -38.0 -71.7 -2.5 -4.3 -8.8 -39.0 -1.9 -15.4 -72.9 -91.0 66.9 (-29.1)
VGG-face [63] 97.8 -0.2 -1.3 -8.1 -27.5 -0.3 -0.7 -2.1 -9.2 -0.3 -1.5 -7.5 -23.7 90.9 (-6.9)

CBP 93.2 -0.2 -2.0 -10.2 -33.7 -0.1 -0.8 -2.1 -12.6 -0.6 -1.8 -7.1 -17.1 85.9 (-7.3)
SCBP 96.7 -0.2 -0.7 -5.4 -21.6 -0.4 -0.4 -2.1 -11.0 0.0 -1.3 -7.0 -15.7 91.2 (-5.5)

To provide a comprehensive result, the average accuracy across the four types of probe sets is reported.
1The average accuracy on the original FERET data set.
2The average accuracy across all types and all degrees of the tested degradations.Accuracy loss of each degradation degree on each probe set is reported in detail.
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and reduced resolution. Although descriptors with Gabor filtering
or directional derivative of Gaussian filtering (MD-DCP and
LGBP) also exhibit a certain degree of robustness, their absolute
accuracy is notably lower than that of SCBP, lacking sufficient dis-
tinctiveness. On the original FERET probe sets, the accuracy differ-
ence among the four best descriptors, i.e., SCBP, MD-DCP, DFD,
and CBFD, is approximately only 1–2 percent, which all show high
distinctiveness. On the severely blurred and reduced resolution
probe sets, however, the accuracy gap dramatically increases to
70–80 percent. It is possible that their discriminative objectives
result in noise-sensitive filters. For example, CBFD learns as many
as 15 local filters for binary coding in each cell. To optimize three
joint objective functions, approximately half of the CBFD-learned
filters characterize the high-frequency components that are easily
overfitting the noise and distortion, resulting in noise-sensitive
binary codes. In contrast, although the optimality of RF eigenfilter is
derived under the constrained Gaussian noise, it generalizes well on vari-
ous types of image degradations. The scattering architecture of SCBP
naturally achieves a balance between distinctiveness and robust-
ness. Although the off-the-shelf VGG deep learning descriptor
yields the best accuracy, its robustness to image blur and reduced
resolution is still worse than our methods.

4.4 Digital Point and Shoot Camera Images

The final experiment evaluates the feasibility of the proposedmethod
on real-world unconstrained degraded conditions using the Point
and Shoot Face Recognition Challenge (PaSC) database [37]. The
PaSC database contains both still images and videos. The images and
videoswere taken using digital point and shoot cameras, particularly
handheld cameras found in cell phones. The still image portion con-
sists of 9,376 images of 293 people. These still images were taken at
nine locations, both inside buildings and outdoors, with five point-
and-shoot still cameras. As illustrated in Fig. 11, since the images
were taken at a variety of poses and distances from the camera, they
show low image quality due to blurring and low resolution.

To design an informative descriptor for this in-the-wild task, we
borrow an idea from the work of “bless of dimensionality” [23]. It
has been observed that multi-scale facial features extracted both
locally (patch based) and holistically (full face) help to jointly
encode high-dimensional discriminative features. Specifically, we
first preprocess the face as in [70], and then the aligned image are

resized to three scales, where the side lengths of the image are 180,
128, and 90. In the 3 scaled images, local patches at 22 facial land-
marks predefined in [23] are cropped with a fixed size of 32 � 32.
Each patch is divided into 2� 2 non-overlapped cells to characterize
local-level features. At the same time, each of the three scaled
images is divided into 8 � 8 non-overlapped cells to characterize
holistic-level features. Finally, we concatenate the SCBP descriptors
for encoding each cell to form a high-dimensional SCBP (HD-SCBP)
for face descriptors. The dimensions of the features are reduced to
500 by PCA for joint Bayesian learning [71], which seeks a metric
space where the inter-class and intra-class differences are best sepa-
rated. Both the PCA and joint Bayesian models were trained on the
LFW and FRGCdatabases.

As shown in Table 6, HD-SCBP yields the second best verifica-
tion accuracy, which is much better than the two baseline algo-
rithms CohortLDA and LRPCA. On the frontal only images, HD-
SCBP yields a 0.64 verification rate at a 0.01 false acceptance rate,
whereas the recently proposed fusion of supervised deep auto-
encoders (called L-CSSE in [61]) yields 0.61 and the commercial
matcher PittPatt yields 0.55. Similar improvements are also
observed on the full database, where HD-SCBP yields 0.55 and Pitt-
Patt provides a 0.41 verification rate. Our method is also compara-
ble to the off-the-shelf VGG-face descriptor [63], which is based on
a deep CNN pre-trained by millions of face images. Moreover, we
have also observed that our handcrafted HD-SCBP has a certain
complementary effect to the deep-CNN-based VGG feature
because simply adding the cosine similarity of these two features
improves the verification accuracy by approximately 4–5 percent.
The ROC curves are shown in Fig. 12.

5 CONCLUSIONS

A number of conclusions can be drawn from the experiments:

1. The proposed RF eigenfilters, designed from the neighbor-
hood correlation between image pixels, are efficient and
robust for characterizing facial texture, although their opti-
mality is justified only under restrictive Gaussian assump-
tions. By simply replacing the local derivative filters with
the RF eigenfilters, CBP significantly improves the robust-
ness of LBP.

2. The scattering-like architecture provides a simple para-
digm to design the descriptor with both distinctiveness
and robustness. Although designed by only six predefined
RF eigenfilters, the proposed SCBP achieves comparable
accuracy on the FERET, LFW, and PaSC databases with
other state-of-the-art face descriptors.

3. The negative effects of image noise and degradation may
be underestimated for the applicability of face descriptors.
Low-level descriptors such as LBP, DCP and HOG tend to
break down under a moderate degree of image

Fig. 11. Example images of PaSC database with real-world degradations by weak
lighting, motion blur, poor focus, and low resolution.

TABLE 6
Verification Rates at FAR of 0.01 on the PaSC Still-to-Still

Matching Database

Algorithm Frontal Only Full Database

CohortLDA 0.22 0.08
LRPCA 0.19 0.10
PittPatt (Commercial) 0.55 0.41
L-CSSE [61] 0.61 0.54
VGG-Face [63] 0.77 0.72

HD-SCBP 0.64 0.56
HD-SCBP+VGG 0.82 0.76

Fig. 12. ROC curves on PaSC still-to-still matching protocol. (a) Frontal only
images. (b) Full database.
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degradation because high-frequency elements such as local
derivative and gradient orientation are highly unstable.

4. The commonly preferred learning-based descriptors, such
as DFD and CBFD, tend to derive noise-sensitive filters by
adapting to fine-grained structures. In contrast, our
designed RF eigenfilters with a scattering structure, which
focus on the low-frequency components of images, exhibit
considerably better robustness. Additionally, the hand-
crafted SCBP can outperform learning-based descriptors
with an average margin of 20–30 percent accuracy on
degraded probe images.

5. When training samples are limited, SCBP can outperform
the up-to-date deep auto-encoder based descriptors, and
obtain better robustness than CNN based features under
severe image degradations. On the challenging scenario on
PaSC database, SCBP based high dimensional descriptor
demonstrates complementary effects to the VGG face
descriptor learned from millions of training samples.

By restricting our design to be simple, we have shown that the
SCBP descriptor handcrafted by 6 RF eigenfilters is sufficient to
achieve accurate and robust performance. Naturally, adopting an
increased number of filters with some learning and regularization
techniques would probably enhance the performance. The balance of
designed robustness and learning-based adaptation is themajor issue
for our future work on deriving an optimized descriptor that com-
bines distinctiveness, robustness, and compactness. Interestingly,
our studies have shown that compressive and dense representations,
such as CBP and TIPCA [72], are very helpful for robust face descrip-
tions. On the other hand, collaborative and sparse representations
[73], [74] also show the effectiveness for face recognition. How to
understand the relationships between these two kinds of representa-
tion is an interesting problem for future research.
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