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Sequential data

Sequence of words in an English sentence

Acoustic features at successive time frames in speech recognition

Successive frames in video classification

Rainfall measurements on successive days in Hong Kong

Daily values of current exchange rate

Nucleotide base pairs in a strand of DNA

Instead of making independent predictions on samples, assume
the dependency among samples and make a sequence of
decisions for sequential samples
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Modeling sequential data

Sample data sequences from a certain distribution

P(x1, . . . , xT )

Generate natural sentences to describe an image

P(y1, . . . , yT |I)

Activity recognition from a video sequence

P(y|x1, . . . , xT )
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Modeling sequential data

Speech recognition
P(y1, . . . , yT |x1, . . . , xT )

Object tracking
P(y1, . . . , yT |x1, . . . , xT )
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Modeling sequential data

Generate natural sentences to describe a video

P(y1, . . . , yT ′ |x1, . . . , xT )

Language translation

P(y1, . . . , yT ′ |x1, . . . , xT )
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Markov Models
Hidden Markov Model

Modeling sequential data

Use the chain rule to express the joint distribution for a sequence of
observations

p(x1, . . . , xT ) =
T∏

t=1

p(xt |x1, . . . , xt−1)

Impractical to consider general dependence of future dependence on all
previous observations p(xt |xt−1, . . . , x0)

Complexity would grow without limit as the number of
observations increases

It is expected that recent observations are more informative than more
historical observations in predicting future values
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Markov models

Markov models assume dependence on most recent observations
First-order Markov model

p(x1, . . . , xT ) =
T∏

t=1

p(xt |xt−1)

Second-order Markov model

p(x1, . . . , xT ) =
T∏

t=1

p(xt |xt−1, xt−2)
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Hidden Markov Model (HMM)

A classical way to model sequential data

Sequence pairs h1, h2, . . . , hT (hidden variables) and x1, x2, . . . , xT

(observations) are generated by the following process
Pick h1 at random from the distribution P(h1). Pick x1 from the
distribution p(x1|h1)
For t = 2 to T

Choose ht at random from the distribution p(ht |ht−1)
Choose xt at random from the distribution p(xt |ht)

The joint distribution is

p(x1, . . . , xT , h1, . . . , hT ,θ) = P(h1)
T∏

t=2

P(ht |ht−1)
T∏

t=1

p(xt |ht)
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Markov Models
Hidden Markov Model

Parameters of HMM

Initial state parameters P(h1 = ωi) = πi ,
∑

i πi = 1
Transition probabilities P(ht = ωj |ht−1 = ωi) = aij ,

∑
j aij = 1. A = [aij ]

is transition matrix

Emission probabilities p(xt |ht)

If xt is a single discrete variable, xt = xt ∈ {v1, . . . , vm},
P(xt = vk |zt = ωj) = bjk ,

∑
k bjk = 1
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Markov Models
Hidden Markov Model

Parameters of HMM

Evaluation problem: determine the probability that a particular data
sequence x1, . . . , xT was generated by that model,

P(x1, . . . , xT )

Decoding problem: given a set of observations x1, . . . , xT , determine
the most likely sequence of hidden states h1, . . . , hT that lead to the
observations

(h∗1 , . . . , h
∗
T ) = argmax(h1,...,hT )P(h1, . . . , hT |x1, . . . , xT )

Learning problem: given a set of training observations of visible
variables, without knowing the hidden variables, determine the
parameters of HMM.

θ∗ = P(x1, . . . , xT ; θ)
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Recurrent neural networks (RNN)

While HMM is a generative model RNN is a discriminative model

Model a dynamic system driven by an external signal xt

ht = Fθ(ht−1, xt)

ht contains information about the whole past sequence. The equation
above implicitly defines a function which maps the whole past sequence
(xt , . . . , x1) to the current sate ht = Gt(xt , . . . , x1)

Left: physical implementation of RNN, seen as a circuit. The black square indicates a delay of 1 time step. Right:
the same seen as an unfolded flow graph, where each node is now associated with one particular time instance.
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Recurrent neural networks (RNN)

The summary is lossy, since it maps an arbitrary length sequence
(xt , . . . , x1) to a fixed length vector ht . Depending on the training
criterion, ht keeps some important aspects of the past sequence.
Sharing parameters: the same weights are used for different instances
of the artificial neurons at different time steps
Share a similar idea with CNN: replacing a fully connected network with
local connections with parameter sharing
It allows to apply the network to input sequences of different lengths
and predict sequences of different lengths
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Recurrent neural networks (RNN)

Sharing parameters for any sequence length allows more better
generalization properties. If we have to define a different function Gt

for each possible sequence length, each with its own parameters, we
would not get any generalization to sequences of a size not seen in the
training set. One would need to see a lot more training examples,
because a separate model would have to be trained for each sequence
length.
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A vanilla RNN to predict sequences from input
P(y1, . . . , yT |x1, . . . , xT )

Forward propagation equations, assuming that hyperbolic tangent non-linearities
are used in the hidden units and softmax is used in output for classification
problems

ht = tanh(Wxhxt + Whhht−1 + bh)

zt = softmax(Whzht + bz)

p(yt = c) = zt,c

Xiaogang Wang Recurrent Neural Network



cuhk

HMM
Recurrent neural networks

Long Short-Term Memory recurrent networks
Applications

Recurrent neural networks
BP on RNN
Variants of RNN

Cost function

The total loss for a given input/target sequence pair (x, y), measured in
cross entropy

L(x, y) =
∑

t

Lt =
∑

t

− log zt,yt
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Backpropagation on RNN

Review BP on flow graph
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Gradients on Whz and bz

∂L
∂Lt

= 1, ∂L
∂zt

= ∂L
∂Lt

∂Lt
∂zt

= ∂Lt
∂zt

∂L
∂Whz

=
∑

t
∂Lt
∂zt

∂zt
∂Whz

, ∂L
∂bz

=
∑

t
∂Lt
∂zt

∂zt
∂bz

Xiaogang Wang Recurrent Neural Network



cuhk

HMM
Recurrent neural networks

Long Short-Term Memory recurrent networks
Applications

Recurrent neural networks
BP on RNN
Variants of RNN

Gradients on Whh and Wxh

∂L
∂Whh

=
∑

t
∂L
∂ht

∂ht
∂Whh

∂L
∂ht

= ∂L
∂ht+1

∂ht+1
∂ht

+ ∂L
∂zt

∂zt
∂ht
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Predict a single output at the end of the sequence

Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There
might be a target right at the end or the gradient on the output zt can be
obtained by backpropagation from further downsteam modules
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Network with output recurrence

Memory is from the prediction of the previous target, which limits its
expressive power but makes t easier to train
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Generative RNN modeling P(x1, . . . ,xT )

It can generate sequences from this distribution
At the training stage, each xt of the observed sequence serves both as input (for
the current time step) and as target (for the previous time step)
The output zt encodes the parameters of a conditional distribution
P(xt+1|x1, . . . , xt ) = P(xt+1|zt ) for xt+1 given the past sequence x1, . . . , xt
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Generative RNN modeling P(x1, . . . ,xT )

Cost function: negative log-likelihood of x, L =
∑

t Lt

P(x) = P(x1, . . . , xT ) =
T∏

t=1

P(xt |xt−1, . . . , x1)

Lt = − log P(xt |xt−1, . . . , x1)

In generative mode, xt+1 is sampled from the conditional distribution
P(xt+1|x1, . . . , xt ) = P(xt+1|zt ) (dashed arrows) and then that generated
sample xt+1 is fed back as input for computing the next state ht+1
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Generative RNN modeling P(x1, . . . ,xT )

If RNN is used to generate sequences, one must also incorporate in the
output information allowing to stochastically decide when to stop
generating new output elements

In the case when the output is a symbol taken from a vocabulary, one
can add a special symbol corresponding to the end of a sequence

One could also directly directly model the length T of the sequence
through some parametric distribution. P(x1, . . . , xT ) is decomposed into

P(x1, . . . , xT ) = P(x1, . . . , xT |T )P(T )
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RCNNs to represent conditional distributions P(y|x)
If x is a fixed-sized vector, we can simply make it an extra input of the RNN that
generates the y sequence. Some common ways of providing the extra input

as an extra input at each time step, or
as the initial state h0, or
both

Example: generate caption for an image
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RCNNs to represent conditional distributions P(y|x)
The input x is a sequence of the same length as the output sequence y
Removing the dash lines, it assumes yt ’s are independent of each other when
the past input sequence is given, i.e.
P(yt |yt−1, . . . , y1, xt , . . . , x1) = P(yt |xt , . . . , x1)
Without the conditional independence assumption, add the dash lines and the
prediction of yt+1 is based on both the past x’s and past y’s
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Bidirectional RNNs

In some applications, we want to output at time t a prediction regarding
an output which may depend on the whole input sequence

In speech recognition, the correct interpretation of the current
sound as a phoneme may depend on the next few phonemes
because co-articulation and may depend on the next few words
because of the linguistic dependencies between words

Bidirectional recurrent neural network was proposed to address such
need

It combines a forward-going RNN and a backward-going RNN

The idea can be extended to 2D input with four RNN going in four
directions
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Bidirectional RNNs

gt summaries the information from the past sequence, and ht

summaries the information from the future sequence
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Long short-term memory net

Plateaus and cliffs
The error surfaces of training deep neural networks include local minima,
plateaus (regions where error varies only slightly as a function of weights), and
cliffs (regions where the gradients rise sharply)
Plateaus and cliffs are more important barriers to training neural networks than
local minima

It is very difficult (or slow) to effectively update the parameters in plateaus
When the parameters approach a cliff region, the gradient update step can
move the learner towards a very bad configuration, ruining much progress
made during recent training iterations.
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Vanishing and exploding gradients

Training a very deep net makes the problem even more serious, since
after BP through many layers, the gradients become either very small or
very large
RNN can be treated as a deep net when modeling long term
dependency
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Vanishing and exploding gradients

In very deep nets and recurrent nets, the final output is composed of a
large number of non-linear transformations

Even though each of these non-linear stages may be relatively smooth,
their composition is going to be much “more non-linear”, in the sense
that the derivatives through the whole composition will tend to be either
very small or very large, with more ups and downs

When composing many non-linearities (like the activation non-linearity in a deep or
recurrent neural network), the result is highly non-linear, typically with most of the
values associated with a tiny derivative, some values with a large derivative, and many
ups and downs (not shown here)
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Vanishing and exploding gradients

This arises because the Jacobian (matrix of derivatives) of a composition is
the product of the Jacobian of each stage, i.e. if

f = fT ◦ fT−1 ◦ . . . f2 ◦ f1

The Jacobian matrix of derivatives of f (x) with respect to its input vector x is

f ′ = f ′T f ′T−1 . . . f
′
2f ′1

where
f ′ =

∂f (x)
∂x

and
f ′t =

∂ft(αt)

∂αt

where αt = ft−1(ft−1(. . . f2(f1(x)))), i.e. composition has been replaced by
matrix multiplication
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Vanishing and exploding gradients

In the scalar case, we can imagine that multiplying many numbers
together tends to be either very large or very small

In the special case where all the numbers in the product have the same
value α, this is obvious, since αT goes to 0 if α < 1 and to∞ if α > 1 as
T increases

The more general case of non-identical numbers be understood by
taking the logarithm of these numbers, considering them to be random,
and computing the variance of the sum of these logarithms. Although
some cancellation can happen, the variance grows with T . If those
numbers are independent, it grows linearly with T , which means that
the product grows roughly as eT .

This analysis can be generalized to the case of multiplying square
matrices
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Difficulty of Learning Long-Term Dependencies
Consider the gradient of a loss LT at time T with respect to the parameter θ of
the recurrent function Fθ

ht = Fθ(ht−1, xt )

∂LT

∂θ
=

∑
t≤T

∂LT

∂hT

∂hT

∂ht

∂Fθ(ht−1, xt )

∂θ

∂LT
∂hT

∂hT
∂ht

∂Fθ(ht−1,xt )

∂θ
encodes long-term dependency when T − t is large

Xiaogang Wang Recurrent Neural Network



cuhk

HMM
Recurrent neural networks

Long Short-Term Memory recurrent networks
Applications

Challenge of long-term dependency
Combine short and long paths
Long short-term memory net

Difficulty of Learning Long-Term Dependencies

∂hT

∂ht
=

∂hT

∂hT−1

∂hT−1

∂hT−2
· · · ∂ht+1

∂ht

Each layer-wise Jacobian ∂ht+1
∂ht

is the product of two matrices: (a) the
recurrent matrix W and (b) the diagonal matrix whose entries are the
derivatives of the non-linearities associated with the hidden units, which
variy depending on the time step. This makes it likely that successive
Jacobians have simliar eigenvectors, making the product of these
Jacobians explode or vanish even faster
∂LT
∂θ

is a weighted sum of terms over spans T − t , with weights that are
exponentially smaller (or larger) for long-term dependencies relating the
state at t to the state at T

The signal about long term dependecies will tend to be hidden by the
smallest fluctuations arising from short-term dependenties
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Long short-term memory net

Combine short and long paths in unfolded flow graph
Longer-delay connections allow to connect the past states to future states
through short paths
Gradients will vanish exponentially with respect to the number of time steps
If we have recurrent connections with a time-delay of D, the instead of the
vanishing or explosion going as O(λT ) over T steps (where λ is largest
eigenvalue of the Jacobians ∂ht

∂ht−1
), the unfolded recurrent network now has

paths through which gradients grow as O(λT/D) because the number of effective
steps is T/D
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Leaky units with self-connections

ht+1 = (1−
1
τi
)ht +

1
τi

tanh(Wxhxt + Whhht + bh)

The new value of the state ht+1 is a combination of linear and non-linear parts of
ht

The errors are easier to be back propagated through the paths of red lines,
which are linear

Xiaogang Wang Recurrent Neural Network
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Leaky units with self-connections

When τ = 1, there is no linear self-recurrence, only the nonlinear
update which we can find in ordinary recurrent networks

When τ > 1, this linear recurrence allows gradients to propagate more
easily. When τ is large, the sate changes very slowly, integrating the
past values associated with the input sequence

τ controls the rate of forgetting old states. It can be viewed as a smooth
variant of the idea of the previous model

By associating different time scales τ with different units, one obtains
different paths corresponding to different forgetting rates

Those time constants can be fixed manually or can be learned as free
parameters
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Long Short-Term Memory (LSTM) net

In the leaky units with self-connections, the forgetting rate is constant
during the whole sequence.

The role of leaky units is to accumulate information over a long duration.
However, once that information gets used, it might be useful for the
neural network to forget the old state.

For example, if a video sequence is composed as subsequences
corresponding to different actions, we want a leaky unit to accumulate
evidence inside each subsequnece, and we need a mechanism to forget
the old state by setting it to zero and starting to count from fresh when
starting to process the next subsequence

The forgetting rates are expected to be different at different time steps,
depending on their previous hidden sates and current input
(conditioning the forgetting on the context)

Parameters controlling the forgetting rates are learned from train data

Xiaogang Wang Recurrent Neural Network
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Long Short-Term Memory (LSTM) net
ft = σ(Wxf xt + Whf ht−1 + bf ), it = σ(Wxi xt + Whi ht−1 + bi ),
ot = σ(Wxoxt + Whoht−1 + bo)
gt = tanh(Wxcxt + Whcht−1 + bc), ct = ft � ct−1 + it � gt
ht = ot � tanh(ct ), zt = softmax(Whzht + bz)

Xiaogang Wang Recurrent Neural Network
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Long Short-Term Memory (LSTM) net

The core of LSTM is a memory cell ct which encodes, at every time
step, the knowledge of the inputs that have been observed up to that
step.

The memory cell ct has the same inputs (ht−1 and xt ) and outputs (ht )
as a normal recurrent network, but has more parameters and a system
of gating units that controls the flow of information

ct has a linear self-connection similar to the leaky units, but the
self-connection weight is controlled by a forget gate unit ft , that sets this
weight to a value between 0 and 1 via a sigmoid unit
ft = σ(Wxf xt + Whf ht−1 + bf )

The input gate unit it is computed similarly to the forget gate, but with its
own parameters

The output ht of the LSTM cell can also be shut off , via the output gate
ot (ht = ot � tanh(ct)), which is also a sigmoid unit for gating
ot = σ(Wxoxt + Whoht−1 + bo)

Xiaogang Wang Recurrent Neural Network
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Long Short-Term Memory (LSTM) net

(a): A vanilla RNN with input sequence and an output sequence

(b): Add a deep hidden-to-hidden transformation

(c): Skip connections and allow gradients to flow more easily backwards
in spite of the extra non-linearity due to the intermediate hidden layer

Xiaogang Wang Recurrent Neural Network
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Long Short-Term Memory (LSTM) net

(c): Depth can also be added in the hidden-to-output transform

(d): A hierarchy of RNNs, which can be stacked on top of each other

Xiaogang Wang Recurrent Neural Network
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Sequence-to-sequence language translation

Sutskever, Vinyals, and Le NIPS 2014
Model P(y1, . . . , yT ′ |x1, . . . , xT ). The input and output sequences have different
lengths, are not aligned, and even do not have monotonic relationship
Use one LSTM to read the input sequence (x1, . . . , xT ), one timestep at a time,
to obtain a large fixed-dimensional vector representation v, which is given by the
last hidden sate of the LSTM
Then conditioned on v, a second LSTM generates the output sequence
(y1, . . . , yT ′ ) and computes its probability

p(y1, . . . , yT ′ |v) =
T ′∏
t=1

p(yt |v , y1, . . . , yt−1)

The model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The model stops making
predictions after outputting the end-of-sentence token.
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Sequence-to-sequence language translation

It requires each sentence ends with a special end-of-sequence symbol “<EOS>”,
which enables the model to define a distribution over sequences of all possible
lengths

It is valuable to reverse the order of the words of the input sequence. For
example, instead of mapping the sentence a, b, c to the sentence α, β, γ, the
LSTM is asked to map c, b, a to α, β, γ, where α, β, γ is the translation of a, b,
c. This way, a is in close proximity to α, b is fairly close to β, and so on, a fact
that makes it easy for stochastic gradient descent to “establish communication”
between the input and the output. It introduces many short term dependencies in
the data that make the optimization problem much easier.
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Sequence-to-sequence language translation

The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained after processing the
phrases in the figures. The phrases are clustered by meaning, which in these examples is primarily a function of
word order, which would be difficult to capture with a bag-of-words model. The figure clearly shows that the
representations are sensitive to the order of words, while being fairly insensitive to the replacement of an active
voice with a passive voice.
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Sequence-to-sequence language translation

LSTM can correctly translate very long sentences
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Generate image caption

Vinyals et al. arXiv 2014

Use a CNN as an image encoder and transform it to a fixed-length
vector

It is used as the initial hidden state of a “decoder” RNN that generates
the target sequence
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Generate image caption
The learning process is to maximize the probability of the correct description
given the image

θ∗ = arg max
∑
(I,S)

log P(S|I; θ)

log P(S|I) =
N∑

t=0

log P(St |I,S0, . . . ,St−1)

I is an image and S is its correct description
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Generate image caption

Denote by S0 a special start work and by SN a special stop word

Both the image and the words are mapped to the same space, the image by
using CNN, the words by using word embedding We

The image I is only input once at t − 1 to inform the LSTM about the image
contents

Sampling: sample the first word according to P1, then provide the corresponding
embedding as input and sample P2, continuing like this until it samples the
special end-of-sentence token

x−1 = CNN(I)

xt = WeSt , t ∈ {0, . . . ,N − 1}

Pt+1 = LSTM(xt ), t ∈ {0, . . . ,N − 1}

L(I,S) = −
N∑

t=1

log Pt (St )
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Translate videos to sentences

Venugopalan et al. arXiv 2014
The challenge is to capture the joint dependencies of a sequence of
frames and a corresponding sequence of words
Previous works simplified the problem by detecting a fixed set of
semantic roles, such as subject, verb, and object, as an intermediate
representation and adopted oversimplified rigid sentence templates.

Machine output: A cat is playing with toy.
Humans: A Ferret and cat fighting with each other. / A cat and a ferret are playing. / A
kitten and a ferret are playfully wresting.
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Translate videos to sentences

Each frame is modeled as CNN pre-trained on ImageNet

The meaning sate and sequence of words is modeled by a RNN
pre-trained on images with associated with sentence captions
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Translate videos to sentences

Use CNN to convert a video to a fixed length representation vector v

Use RNN to decode the vector into a sentence just like language
translation

p(y1, . . . , yT ′ |v) =
T ′∏
t=1

p(yt |v , y1, . . . , yt−1)

Use two layers of LSTMs (one LSTM stacked on top of another)
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Translate videos to sentences
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